Cargando…
A new prediction approach of the COVID-19 virus pandemic behavior with a hybrid ensemble modular nonlinear autoregressive neural network
We describe in this paper an approach for predicting the COVID-19 time series in the world using a hybrid ensemble modular neural network, which combines nonlinear autoregressive neural networks. At the level of the modular neural network, which is formed with several modules (ensembles in this case...
Autores principales: | Melin, Patricia, Monica, Julio Cesar, Sanchez, Daniela, Castillo, Oscar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675021/ https://www.ncbi.nlm.nih.gov/pubmed/33230389 http://dx.doi.org/10.1007/s00500-020-05452-z |
Ejemplares similares
-
Optimization using the firefly algorithm of ensemble neural networks with type-2 fuzzy integration for COVID-19 time series prediction
por: Melin, Patricia, et al.
Publicado: (2021) -
Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico
por: Melin, Patricia, et al.
Publicado: (2020) -
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
por: Sánchez, Daniela, et al.
Publicado: (2017) -
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
por: Men, Zhongxian, et al.
Publicado: (2014) -
Hierarchical modular granular neural networks with fuzzy aggregation
por: Sanchez, Daniela, et al.
Publicado: (2016)