Cargando…
Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology
The combination of big data and artificial intelligence (AI) is having an increasing impact on the field of electrophysiology. Algorithms are created to improve the automated diagnosis of clinical ECGs or ambulatory rhythm devices. Furthermore, the use of AI during invasive electrophysiological stud...
Autores principales: | van de Leur, Rutger R, Boonstra, Machteld J, Bagheri, Ayoub, Roudijk, Rob W, Sammani, Arjan, Taha, Karim, Doevendans, Pieter AFM, van der Harst, Pim, van Dam, Peter M, Hassink, Rutger J, van Es, René, Asselbergs, Folkert W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radcliffe Cardiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675143/ https://www.ncbi.nlm.nih.gov/pubmed/33240510 http://dx.doi.org/10.15420/aer.2020.26 |
Ejemplares similares
-
Discovering and Visualizing Disease-Specific Electrocardiogram Features Using Deep Learning: Proof-of-Concept in Phospholamban Gene Mutation Carriers
por: van de Leur, Rutger R., et al.
Publicado: (2021) -
Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders( )
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks( )
por: Sammani, Arjan, et al.
Publicado: (2022) -
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
por: Vranken, Jeroen F, et al.
Publicado: (2021)