Cargando…
Artificial intelligence approaches to predict coronary stenosis severity using non-invasive fractional flow reserve
Fractional flow reserve is the current reference standard in the assessment of the functional impact of a stenosis in coronary heart disease. In this study, three models of artificial intelligence of varying degrees of complexity were compared to fractional flow reserve measurements. The three model...
Autores principales: | Carson, Jason M, Chakshu, Neeraj Kavan, Sazonov, Igor, Nithiarasu, Perumal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675765/ https://www.ncbi.nlm.nih.gov/pubmed/32741245 http://dx.doi.org/10.1177/0954411920946526 |
Ejemplares similares
-
A semi‐active human digital twin model for detecting severity of carotid stenoses from head vibration—A coupled computational mechanics and computer vision method
por: Chakshu, Neeraj Kavan, et al.
Publicado: (2019) -
Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis
por: Chakshu, Neeraj Kavan, et al.
Publicado: (2020) -
An AI based digital-twin for prioritising pneumonia patient
treatment
por: Chakshu, Neeraj Kavan, et al.
Publicado: (2022) -
A novel, FFT-based one-dimensional blood flow solution method for arterial network
por: Sazonov, Igor, et al.
Publicado: (2019) -
Non‐invasive coronary CT angiography‐derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies
por: Carson, Jason Matthew, et al.
Publicado: (2019)