Cargando…

Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning

Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jae Seung, Lee, Chanhee, Song, Wookyeong, Choo, Wonho, Lee, Seungyeoun, Lee, Sungyoung, Han, Youngmin, Bassi, Claudio, Salvia, Roberto, Marchegiani, Giovanni, Wolfgang, Cristopher L., He, Jin, Blair, Alex B., Kluger, Michael D., Su, Gloria H., Kim, Song Cheol, Song, Ki-Byung, Yamamoto, Masakazu, Higuchi, Ryota, Hatori, Takashi, Yang, Ching-Yao, Yamaue, Hiroki, Hirono, Seiko, Satoi, Sohei, Fujii, Tsutomu, Hirano, Satoshi, Lou, Wenhui, Hashimoto, Yasushi, Shimizu, Yasuhiro, Del Chiaro, Marco, Valente, Roberto, Lohr, Matthias, Choi, Dong Wook, Choi, Seong Ho, Heo, Jin Seok, Motoi, Fuyuhiko, Matsumoto, Ippei, Lee, Woo Jung, Kang, Chang Moo, Shyr, Yi-Ming, Wang, Shin-E., Han, Ho-Seong, Yoon, Yoo-Seok, Besselink, Marc G., van Huijgevoort, Nadine C. M., Sho, Masayuki, Nagano, Hiroaki, Kim, Sang Geol, Honda, Goro, Yang, Yinmo, Yu, Hee Chul, Do Yang, Jae, Chung, Jun Chul, Nagakawa, Yuichi, Seo, Hyung Il, Choi, Yoo Jin, Byun, Yoonhyeong, Kim, Hongbeom, Kwon, Wooil, Park, Taesung, Jang, Jin-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676251/
https://www.ncbi.nlm.nih.gov/pubmed/33208887
http://dx.doi.org/10.1038/s41598-020-76974-7
_version_ 1783611734895886336
author Kang, Jae Seung
Lee, Chanhee
Song, Wookyeong
Choo, Wonho
Lee, Seungyeoun
Lee, Sungyoung
Han, Youngmin
Bassi, Claudio
Salvia, Roberto
Marchegiani, Giovanni
Wolfgang, Cristopher L.
He, Jin
Blair, Alex B.
Kluger, Michael D.
Su, Gloria H.
Kim, Song Cheol
Song, Ki-Byung
Yamamoto, Masakazu
Higuchi, Ryota
Hatori, Takashi
Yang, Ching-Yao
Yamaue, Hiroki
Hirono, Seiko
Satoi, Sohei
Fujii, Tsutomu
Hirano, Satoshi
Lou, Wenhui
Hashimoto, Yasushi
Shimizu, Yasuhiro
Del Chiaro, Marco
Valente, Roberto
Lohr, Matthias
Choi, Dong Wook
Choi, Seong Ho
Heo, Jin Seok
Motoi, Fuyuhiko
Matsumoto, Ippei
Lee, Woo Jung
Kang, Chang Moo
Shyr, Yi-Ming
Wang, Shin-E.
Han, Ho-Seong
Yoon, Yoo-Seok
Besselink, Marc G.
van Huijgevoort, Nadine C. M.
Sho, Masayuki
Nagano, Hiroaki
Kim, Sang Geol
Honda, Goro
Yang, Yinmo
Yu, Hee Chul
Do Yang, Jae
Chung, Jun Chul
Nagakawa, Yuichi
Seo, Hyung Il
Choi, Yoo Jin
Byun, Yoonhyeong
Kim, Hongbeom
Kwon, Wooil
Park, Taesung
Jang, Jin-Young
author_facet Kang, Jae Seung
Lee, Chanhee
Song, Wookyeong
Choo, Wonho
Lee, Seungyeoun
Lee, Sungyoung
Han, Youngmin
Bassi, Claudio
Salvia, Roberto
Marchegiani, Giovanni
Wolfgang, Cristopher L.
He, Jin
Blair, Alex B.
Kluger, Michael D.
Su, Gloria H.
Kim, Song Cheol
Song, Ki-Byung
Yamamoto, Masakazu
Higuchi, Ryota
Hatori, Takashi
Yang, Ching-Yao
Yamaue, Hiroki
Hirono, Seiko
Satoi, Sohei
Fujii, Tsutomu
Hirano, Satoshi
Lou, Wenhui
Hashimoto, Yasushi
Shimizu, Yasuhiro
Del Chiaro, Marco
Valente, Roberto
Lohr, Matthias
Choi, Dong Wook
Choi, Seong Ho
Heo, Jin Seok
Motoi, Fuyuhiko
Matsumoto, Ippei
Lee, Woo Jung
Kang, Chang Moo
Shyr, Yi-Ming
Wang, Shin-E.
Han, Ho-Seong
Yoon, Yoo-Seok
Besselink, Marc G.
van Huijgevoort, Nadine C. M.
Sho, Masayuki
Nagano, Hiroaki
Kim, Sang Geol
Honda, Goro
Yang, Yinmo
Yu, Hee Chul
Do Yang, Jae
Chung, Jun Chul
Nagakawa, Yuichi
Seo, Hyung Il
Choi, Yoo Jin
Byun, Yoonhyeong
Kim, Hongbeom
Kwon, Wooil
Park, Taesung
Jang, Jin-Young
author_sort Kang, Jae Seung
collection PubMed
description Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational, multi-institutional, retrospective study. Clinical variables including age, sex, main duct diameter, cyst size, mural nodule, and tumour location were factors considered for model development (MD). After the division into a MD set and a test set (2:1), the best ML and LR models were developed by training with the MD set using a tenfold cross validation. The test area under the receiver operating curves (AUCs) of the two models were calculated using an independent test set. A total of 3,708 patients were included. The stacked ensemble algorithm in the ML model and variable combinations containing all variables in the LR model were the most chosen during 200 repetitions. After 200 repetitions, the mean AUCs of the ML and LR models were comparable (0.725 vs. 0.725). The performances of the ML and LR models were comparable. The LR model was more practical than ML counterpart, because of its convenience in clinical use and simple interpretability.
format Online
Article
Text
id pubmed-7676251
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76762512020-11-23 Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning Kang, Jae Seung Lee, Chanhee Song, Wookyeong Choo, Wonho Lee, Seungyeoun Lee, Sungyoung Han, Youngmin Bassi, Claudio Salvia, Roberto Marchegiani, Giovanni Wolfgang, Cristopher L. He, Jin Blair, Alex B. Kluger, Michael D. Su, Gloria H. Kim, Song Cheol Song, Ki-Byung Yamamoto, Masakazu Higuchi, Ryota Hatori, Takashi Yang, Ching-Yao Yamaue, Hiroki Hirono, Seiko Satoi, Sohei Fujii, Tsutomu Hirano, Satoshi Lou, Wenhui Hashimoto, Yasushi Shimizu, Yasuhiro Del Chiaro, Marco Valente, Roberto Lohr, Matthias Choi, Dong Wook Choi, Seong Ho Heo, Jin Seok Motoi, Fuyuhiko Matsumoto, Ippei Lee, Woo Jung Kang, Chang Moo Shyr, Yi-Ming Wang, Shin-E. Han, Ho-Seong Yoon, Yoo-Seok Besselink, Marc G. van Huijgevoort, Nadine C. M. Sho, Masayuki Nagano, Hiroaki Kim, Sang Geol Honda, Goro Yang, Yinmo Yu, Hee Chul Do Yang, Jae Chung, Jun Chul Nagakawa, Yuichi Seo, Hyung Il Choi, Yoo Jin Byun, Yoonhyeong Kim, Hongbeom Kwon, Wooil Park, Taesung Jang, Jin-Young Sci Rep Article Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational, multi-institutional, retrospective study. Clinical variables including age, sex, main duct diameter, cyst size, mural nodule, and tumour location were factors considered for model development (MD). After the division into a MD set and a test set (2:1), the best ML and LR models were developed by training with the MD set using a tenfold cross validation. The test area under the receiver operating curves (AUCs) of the two models were calculated using an independent test set. A total of 3,708 patients were included. The stacked ensemble algorithm in the ML model and variable combinations containing all variables in the LR model were the most chosen during 200 repetitions. After 200 repetitions, the mean AUCs of the ML and LR models were comparable (0.725 vs. 0.725). The performances of the ML and LR models were comparable. The LR model was more practical than ML counterpart, because of its convenience in clinical use and simple interpretability. Nature Publishing Group UK 2020-11-18 /pmc/articles/PMC7676251/ /pubmed/33208887 http://dx.doi.org/10.1038/s41598-020-76974-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kang, Jae Seung
Lee, Chanhee
Song, Wookyeong
Choo, Wonho
Lee, Seungyeoun
Lee, Sungyoung
Han, Youngmin
Bassi, Claudio
Salvia, Roberto
Marchegiani, Giovanni
Wolfgang, Cristopher L.
He, Jin
Blair, Alex B.
Kluger, Michael D.
Su, Gloria H.
Kim, Song Cheol
Song, Ki-Byung
Yamamoto, Masakazu
Higuchi, Ryota
Hatori, Takashi
Yang, Ching-Yao
Yamaue, Hiroki
Hirono, Seiko
Satoi, Sohei
Fujii, Tsutomu
Hirano, Satoshi
Lou, Wenhui
Hashimoto, Yasushi
Shimizu, Yasuhiro
Del Chiaro, Marco
Valente, Roberto
Lohr, Matthias
Choi, Dong Wook
Choi, Seong Ho
Heo, Jin Seok
Motoi, Fuyuhiko
Matsumoto, Ippei
Lee, Woo Jung
Kang, Chang Moo
Shyr, Yi-Ming
Wang, Shin-E.
Han, Ho-Seong
Yoon, Yoo-Seok
Besselink, Marc G.
van Huijgevoort, Nadine C. M.
Sho, Masayuki
Nagano, Hiroaki
Kim, Sang Geol
Honda, Goro
Yang, Yinmo
Yu, Hee Chul
Do Yang, Jae
Chung, Jun Chul
Nagakawa, Yuichi
Seo, Hyung Il
Choi, Yoo Jin
Byun, Yoonhyeong
Kim, Hongbeom
Kwon, Wooil
Park, Taesung
Jang, Jin-Young
Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
title Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
title_full Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
title_fullStr Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
title_full_unstemmed Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
title_short Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
title_sort risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676251/
https://www.ncbi.nlm.nih.gov/pubmed/33208887
http://dx.doi.org/10.1038/s41598-020-76974-7
work_keys_str_mv AT kangjaeseung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT leechanhee riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT songwookyeong riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT choowonho riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT leeseungyeoun riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT leesungyoung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hanyoungmin riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT bassiclaudio riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT salviaroberto riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT marchegianigiovanni riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT wolfgangcristopherl riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hejin riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT blairalexb riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT klugermichaeld riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT sugloriah riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT kimsongcheol riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT songkibyung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT yamamotomasakazu riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT higuchiryota riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hatoritakashi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT yangchingyao riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT yamauehiroki riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hironoseiko riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT satoisohei riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT fujiitsutomu riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hiranosatoshi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT louwenhui riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hashimotoyasushi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT shimizuyasuhiro riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT delchiaromarco riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT valenteroberto riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT lohrmatthias riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT choidongwook riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT choiseongho riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT heojinseok riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT motoifuyuhiko riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT matsumotoippei riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT leewoojung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT kangchangmoo riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT shyryiming riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT wangshine riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hanhoseong riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT yoonyooseok riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT besselinkmarcg riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT vanhuijgevoortnadinecm riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT shomasayuki riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT naganohiroaki riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT kimsanggeol riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT hondagoro riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT yangyinmo riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT yuheechul riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT doyangjae riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT chungjunchul riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT nagakawayuichi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT seohyungil riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT choiyoojin riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT byunyoonhyeong riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT kimhongbeom riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT kwonwooil riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT parktaesung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning
AT jangjinyoung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning