Cargando…
Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676251/ https://www.ncbi.nlm.nih.gov/pubmed/33208887 http://dx.doi.org/10.1038/s41598-020-76974-7 |
_version_ | 1783611734895886336 |
---|---|
author | Kang, Jae Seung Lee, Chanhee Song, Wookyeong Choo, Wonho Lee, Seungyeoun Lee, Sungyoung Han, Youngmin Bassi, Claudio Salvia, Roberto Marchegiani, Giovanni Wolfgang, Cristopher L. He, Jin Blair, Alex B. Kluger, Michael D. Su, Gloria H. Kim, Song Cheol Song, Ki-Byung Yamamoto, Masakazu Higuchi, Ryota Hatori, Takashi Yang, Ching-Yao Yamaue, Hiroki Hirono, Seiko Satoi, Sohei Fujii, Tsutomu Hirano, Satoshi Lou, Wenhui Hashimoto, Yasushi Shimizu, Yasuhiro Del Chiaro, Marco Valente, Roberto Lohr, Matthias Choi, Dong Wook Choi, Seong Ho Heo, Jin Seok Motoi, Fuyuhiko Matsumoto, Ippei Lee, Woo Jung Kang, Chang Moo Shyr, Yi-Ming Wang, Shin-E. Han, Ho-Seong Yoon, Yoo-Seok Besselink, Marc G. van Huijgevoort, Nadine C. M. Sho, Masayuki Nagano, Hiroaki Kim, Sang Geol Honda, Goro Yang, Yinmo Yu, Hee Chul Do Yang, Jae Chung, Jun Chul Nagakawa, Yuichi Seo, Hyung Il Choi, Yoo Jin Byun, Yoonhyeong Kim, Hongbeom Kwon, Wooil Park, Taesung Jang, Jin-Young |
author_facet | Kang, Jae Seung Lee, Chanhee Song, Wookyeong Choo, Wonho Lee, Seungyeoun Lee, Sungyoung Han, Youngmin Bassi, Claudio Salvia, Roberto Marchegiani, Giovanni Wolfgang, Cristopher L. He, Jin Blair, Alex B. Kluger, Michael D. Su, Gloria H. Kim, Song Cheol Song, Ki-Byung Yamamoto, Masakazu Higuchi, Ryota Hatori, Takashi Yang, Ching-Yao Yamaue, Hiroki Hirono, Seiko Satoi, Sohei Fujii, Tsutomu Hirano, Satoshi Lou, Wenhui Hashimoto, Yasushi Shimizu, Yasuhiro Del Chiaro, Marco Valente, Roberto Lohr, Matthias Choi, Dong Wook Choi, Seong Ho Heo, Jin Seok Motoi, Fuyuhiko Matsumoto, Ippei Lee, Woo Jung Kang, Chang Moo Shyr, Yi-Ming Wang, Shin-E. Han, Ho-Seong Yoon, Yoo-Seok Besselink, Marc G. van Huijgevoort, Nadine C. M. Sho, Masayuki Nagano, Hiroaki Kim, Sang Geol Honda, Goro Yang, Yinmo Yu, Hee Chul Do Yang, Jae Chung, Jun Chul Nagakawa, Yuichi Seo, Hyung Il Choi, Yoo Jin Byun, Yoonhyeong Kim, Hongbeom Kwon, Wooil Park, Taesung Jang, Jin-Young |
author_sort | Kang, Jae Seung |
collection | PubMed |
description | Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational, multi-institutional, retrospective study. Clinical variables including age, sex, main duct diameter, cyst size, mural nodule, and tumour location were factors considered for model development (MD). After the division into a MD set and a test set (2:1), the best ML and LR models were developed by training with the MD set using a tenfold cross validation. The test area under the receiver operating curves (AUCs) of the two models were calculated using an independent test set. A total of 3,708 patients were included. The stacked ensemble algorithm in the ML model and variable combinations containing all variables in the LR model were the most chosen during 200 repetitions. After 200 repetitions, the mean AUCs of the ML and LR models were comparable (0.725 vs. 0.725). The performances of the ML and LR models were comparable. The LR model was more practical than ML counterpart, because of its convenience in clinical use and simple interpretability. |
format | Online Article Text |
id | pubmed-7676251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-76762512020-11-23 Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning Kang, Jae Seung Lee, Chanhee Song, Wookyeong Choo, Wonho Lee, Seungyeoun Lee, Sungyoung Han, Youngmin Bassi, Claudio Salvia, Roberto Marchegiani, Giovanni Wolfgang, Cristopher L. He, Jin Blair, Alex B. Kluger, Michael D. Su, Gloria H. Kim, Song Cheol Song, Ki-Byung Yamamoto, Masakazu Higuchi, Ryota Hatori, Takashi Yang, Ching-Yao Yamaue, Hiroki Hirono, Seiko Satoi, Sohei Fujii, Tsutomu Hirano, Satoshi Lou, Wenhui Hashimoto, Yasushi Shimizu, Yasuhiro Del Chiaro, Marco Valente, Roberto Lohr, Matthias Choi, Dong Wook Choi, Seong Ho Heo, Jin Seok Motoi, Fuyuhiko Matsumoto, Ippei Lee, Woo Jung Kang, Chang Moo Shyr, Yi-Ming Wang, Shin-E. Han, Ho-Seong Yoon, Yoo-Seok Besselink, Marc G. van Huijgevoort, Nadine C. M. Sho, Masayuki Nagano, Hiroaki Kim, Sang Geol Honda, Goro Yang, Yinmo Yu, Hee Chul Do Yang, Jae Chung, Jun Chul Nagakawa, Yuichi Seo, Hyung Il Choi, Yoo Jin Byun, Yoonhyeong Kim, Hongbeom Kwon, Wooil Park, Taesung Jang, Jin-Young Sci Rep Article Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational, multi-institutional, retrospective study. Clinical variables including age, sex, main duct diameter, cyst size, mural nodule, and tumour location were factors considered for model development (MD). After the division into a MD set and a test set (2:1), the best ML and LR models were developed by training with the MD set using a tenfold cross validation. The test area under the receiver operating curves (AUCs) of the two models were calculated using an independent test set. A total of 3,708 patients were included. The stacked ensemble algorithm in the ML model and variable combinations containing all variables in the LR model were the most chosen during 200 repetitions. After 200 repetitions, the mean AUCs of the ML and LR models were comparable (0.725 vs. 0.725). The performances of the ML and LR models were comparable. The LR model was more practical than ML counterpart, because of its convenience in clinical use and simple interpretability. Nature Publishing Group UK 2020-11-18 /pmc/articles/PMC7676251/ /pubmed/33208887 http://dx.doi.org/10.1038/s41598-020-76974-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kang, Jae Seung Lee, Chanhee Song, Wookyeong Choo, Wonho Lee, Seungyeoun Lee, Sungyoung Han, Youngmin Bassi, Claudio Salvia, Roberto Marchegiani, Giovanni Wolfgang, Cristopher L. He, Jin Blair, Alex B. Kluger, Michael D. Su, Gloria H. Kim, Song Cheol Song, Ki-Byung Yamamoto, Masakazu Higuchi, Ryota Hatori, Takashi Yang, Ching-Yao Yamaue, Hiroki Hirono, Seiko Satoi, Sohei Fujii, Tsutomu Hirano, Satoshi Lou, Wenhui Hashimoto, Yasushi Shimizu, Yasuhiro Del Chiaro, Marco Valente, Roberto Lohr, Matthias Choi, Dong Wook Choi, Seong Ho Heo, Jin Seok Motoi, Fuyuhiko Matsumoto, Ippei Lee, Woo Jung Kang, Chang Moo Shyr, Yi-Ming Wang, Shin-E. Han, Ho-Seong Yoon, Yoo-Seok Besselink, Marc G. van Huijgevoort, Nadine C. M. Sho, Masayuki Nagano, Hiroaki Kim, Sang Geol Honda, Goro Yang, Yinmo Yu, Hee Chul Do Yang, Jae Chung, Jun Chul Nagakawa, Yuichi Seo, Hyung Il Choi, Yoo Jin Byun, Yoonhyeong Kim, Hongbeom Kwon, Wooil Park, Taesung Jang, Jin-Young Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
title | Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
title_full | Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
title_fullStr | Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
title_full_unstemmed | Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
title_short | Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
title_sort | risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676251/ https://www.ncbi.nlm.nih.gov/pubmed/33208887 http://dx.doi.org/10.1038/s41598-020-76974-7 |
work_keys_str_mv | AT kangjaeseung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT leechanhee riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT songwookyeong riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT choowonho riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT leeseungyeoun riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT leesungyoung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hanyoungmin riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT bassiclaudio riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT salviaroberto riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT marchegianigiovanni riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT wolfgangcristopherl riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hejin riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT blairalexb riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT klugermichaeld riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT sugloriah riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT kimsongcheol riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT songkibyung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT yamamotomasakazu riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT higuchiryota riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hatoritakashi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT yangchingyao riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT yamauehiroki riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hironoseiko riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT satoisohei riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT fujiitsutomu riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hiranosatoshi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT louwenhui riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hashimotoyasushi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT shimizuyasuhiro riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT delchiaromarco riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT valenteroberto riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT lohrmatthias riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT choidongwook riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT choiseongho riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT heojinseok riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT motoifuyuhiko riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT matsumotoippei riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT leewoojung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT kangchangmoo riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT shyryiming riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT wangshine riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hanhoseong riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT yoonyooseok riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT besselinkmarcg riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT vanhuijgevoortnadinecm riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT shomasayuki riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT naganohiroaki riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT kimsanggeol riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT hondagoro riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT yangyinmo riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT yuheechul riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT doyangjae riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT chungjunchul riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT nagakawayuichi riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT seohyungil riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT choiyoojin riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT byunyoonhyeong riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT kimhongbeom riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT kwonwooil riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT parktaesung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning AT jangjinyoung riskpredictionformalignantintraductalpapillarymucinousneoplasmofthepancreaslogisticregressionversusmachinelearning |