Cargando…
Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world in many ways, from cities under lockdown to new social experiences. Although in most...
Autores principales: | Ebadi, Ashkan, Xi, Pengcheng, Tremblay, Stéphane, Spencer, Bruce, Pall, Raman, Wong, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676411/ https://www.ncbi.nlm.nih.gov/pubmed/33230352 http://dx.doi.org/10.1007/s11192-020-03744-7 |
Ejemplares similares
-
COVID-Net USPro: An Explainable Few-Shot Deep Prototypical Network for COVID-19 Screening Using Point-of-Care Ultrasound
por: Song, Jessy, et al.
Publicado: (2023) -
Towards Building a Trustworthy Deep Learning Framework for Medical Image Analysis
por: Ma, Kai, et al.
Publicado: (2023) -
Blending citizen science with natural language processing and machine learning: Understanding the experience of living with multiple sclerosis
por: Haag, Christina, et al.
Publicado: (2023) -
Applied natural language processing with Python: implementing machine learning and deep learning algorithms for natural language processing
por: Beysolow, Taweh
Publicado: (2018) -
Natural language understanding.
por: Allen, James
Publicado: (1995)