Cargando…
Neural mass modeling of slow-fast dynamics of seizure initiation and abortion
Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a lar...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676664/ https://www.ncbi.nlm.nih.gov/pubmed/33166277 http://dx.doi.org/10.1371/journal.pcbi.1008430 |
_version_ | 1783611817469149184 |
---|---|
author | Köksal Ersöz, Elif Modolo, Julien Bartolomei, Fabrice Wendling, Fabrice |
author_facet | Köksal Ersöz, Elif Modolo, Julien Bartolomei, Fabrice Wendling, Fabrice |
author_sort | Köksal Ersöz, Elif |
collection | PubMed |
description | Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a large-amplitude rhythmic activity observed in depth-EEG recordings, in particular in local field potentials (LFPs). The signature characterizing the transition to seizures involves complex oscillatory patterns, which could serve as a marker to prevent seizure initiation by triggering appropriate therapeutic neurostimulation methods. To investigate such protocols, neurophysiological lumped-parameter models at the mesoscopic scale, namely neural mass models, are powerful tools that not only mimic the LFP signals but also give insights on the neural mechanisms related to different stages of seizures. Here, we analyze the multiple time-scale dynamics of a neural mass model and explain the underlying structure of the complex oscillations observed before seizure initiation. We investigate population-specific effects of the stimulation and the dependence of stimulation parameters on synaptic timescales. In particular, we show that intermediate stimulation frequencies (>20 Hz) can abort seizures if the timescale difference is pronounced. Those results have the potential in the design of therapeutic brain stimulation protocols based on the neurophysiological properties of tissue. |
format | Online Article Text |
id | pubmed-7676664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-76766642020-12-02 Neural mass modeling of slow-fast dynamics of seizure initiation and abortion Köksal Ersöz, Elif Modolo, Julien Bartolomei, Fabrice Wendling, Fabrice PLoS Comput Biol Research Article Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a large-amplitude rhythmic activity observed in depth-EEG recordings, in particular in local field potentials (LFPs). The signature characterizing the transition to seizures involves complex oscillatory patterns, which could serve as a marker to prevent seizure initiation by triggering appropriate therapeutic neurostimulation methods. To investigate such protocols, neurophysiological lumped-parameter models at the mesoscopic scale, namely neural mass models, are powerful tools that not only mimic the LFP signals but also give insights on the neural mechanisms related to different stages of seizures. Here, we analyze the multiple time-scale dynamics of a neural mass model and explain the underlying structure of the complex oscillations observed before seizure initiation. We investigate population-specific effects of the stimulation and the dependence of stimulation parameters on synaptic timescales. In particular, we show that intermediate stimulation frequencies (>20 Hz) can abort seizures if the timescale difference is pronounced. Those results have the potential in the design of therapeutic brain stimulation protocols based on the neurophysiological properties of tissue. Public Library of Science 2020-11-09 /pmc/articles/PMC7676664/ /pubmed/33166277 http://dx.doi.org/10.1371/journal.pcbi.1008430 Text en © 2020 Ersöz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Köksal Ersöz, Elif Modolo, Julien Bartolomei, Fabrice Wendling, Fabrice Neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
title | Neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
title_full | Neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
title_fullStr | Neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
title_full_unstemmed | Neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
title_short | Neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
title_sort | neural mass modeling of slow-fast dynamics of seizure initiation and abortion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676664/ https://www.ncbi.nlm.nih.gov/pubmed/33166277 http://dx.doi.org/10.1371/journal.pcbi.1008430 |
work_keys_str_mv | AT koksalersozelif neuralmassmodelingofslowfastdynamicsofseizureinitiationandabortion AT modolojulien neuralmassmodelingofslowfastdynamicsofseizureinitiationandabortion AT bartolomeifabrice neuralmassmodelingofslowfastdynamicsofseizureinitiationandabortion AT wendlingfabrice neuralmassmodelingofslowfastdynamicsofseizureinitiationandabortion |