Cargando…

Impact of COVID-19 lockdown on ambient levels and sources of volatile organic compounds (VOCs) in Nanjing, China

A lot of restrictive measures were implemented in China during January–February 2020 to control rapid spread of COVID-19. Many studies reported impact of COVID-19 lockdown on air quality, but little research focused on ambient volatile organic compounds (VOCs) till now, which play important roles in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ming, Lu, Sihua, Shao, Min, Zeng, Limin, Zheng, Jun, Xie, Fangjian, Lin, Haotian, Hu, Kun, Lu, Xingdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677035/
https://www.ncbi.nlm.nih.gov/pubmed/33261875
http://dx.doi.org/10.1016/j.scitotenv.2020.143823
Descripción
Sumario:A lot of restrictive measures were implemented in China during January–February 2020 to control rapid spread of COVID-19. Many studies reported impact of COVID-19 lockdown on air quality, but little research focused on ambient volatile organic compounds (VOCs) till now, which play important roles in production of ozone and secondary organic aerosol. In this study, impact of COVID-19 lockdown on VOCs mixing ratios and sources were assessed based on online measurements of VOCs in Nanjing during December 20, 2019-Feburary 15, 2020 (P1-P2) and April 15–May 13, 2020 (P3). Average VOCs levels during COVID-19 lockdown period (P2) was 26.9 ppb, about half of value for pre-lockdown period (P1). Chemical composition of VOCs also showed significant changes. Aromatics contribution during decreased from 13% during P1 to 9% during P2, whereas alkanes contribution increased from 64% to 68%. Positive matrix factorization (PMF) was then applied for non-methane hydrocarbons (NMHCs) sources apportionment. Five sources were identified, including a source related to transport and background air masses, three sources related to petrochemical industry or chemical industry (petrochemical industry#1-propene/ethene, petrochemical industry#2-C7-C9 aromatics, and chemical industry-benzene), and a source attributed to gasoline evaporation and vehicular emission. During P2, NMHCs levels from petrochemical industry#2-C7-C9 aromatics showed the largest relative decline of 94%, followed by petrochemical industry#1-propene/ethene (67%), and gasoline evaporation and vehicular emission (67%). Furthermore, ratios of OH reactivity of NMHCs versus NO(2) level (R(OH,NMHCs)/NO(2)) and total oxidant production rate (P (O(X))) were calculated to assess potential influences of COVID-19 lockdown on O(3) formation.