Cargando…
Cross-covariance based affinity for graphs
The accuracy of graph based learning techniques relies on the underlying topological structure and affinity between data points, which are assumed to lie on a smooth Riemannian manifold. However, the assumption of local linearity in a neighborhood does not always hold true. Hence, the Euclidean dist...
Autores principales: | Yadav, Rakesh Kumar, Abhishek, Verma, Shekhar, Venkatesan, S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677445/ https://www.ncbi.nlm.nih.gov/pubmed/34764570 http://dx.doi.org/10.1007/s10489-020-01986-9 |
Ejemplares similares
-
Graph reconstruction using covariance-based methods
por: Sulaimanov, Nurgazy, et al.
Publicado: (2016) -
Graphs of study contributions and covariate distributions for network meta‐regression
por: Donegan, Sarah, et al.
Publicado: (2018) -
Bounds for the Diameters of Orbital Graphs of Affine Groups
por: Maróti, Attila, et al.
Publicado: (2023) -
CoeViz 2: Protein Graphs Derived From Amino Acid Covariance
por: Corcoran, Daniel, et al.
Publicado: (2021) -
A Graph Clustering Approach to Localization for Adaptive Covariance Tuning in Data Assimilation Based on State-Observation Mapping
por: Cheng, Sibo, et al.
Publicado: (2021)