Cargando…
Identifying and Ranking Common COVID-19 Symptoms From Tweets in Arabic: Content Analysis
BACKGROUND: A substantial amount of COVID-19–related data is generated by Twitter users every day. Self-reports of COVID-19 symptoms on Twitter can reveal a great deal about the disease and its prevalence in the community. In particular, self-reports can be used as a valuable resource to learn more...
Autores principales: | Alanazi, Eisa, Alashaikh, Abdulaziz, Alqurashi, Sarah, Alanazi, Aued |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677592/ https://www.ncbi.nlm.nih.gov/pubmed/33119539 http://dx.doi.org/10.2196/21329 |
Ejemplares similares
-
Correction: Identifying and Ranking Common COVID-19 Symptoms From Tweets in Arabic: Content Analysis
por: Alanazi, Eisa, et al.
Publicado: (2020) -
COVID-19 open source data sets: a comprehensive survey
por: Shuja, Junaid, et al.
Publicado: (2020) -
Conversations and Misconceptions About Chemotherapy in Arabic Tweets: Content Analysis
por: Alghamdi, Abdulrahman, et al.
Publicado: (2020) -
Ranking of Importance Measures of Tweet Communities: Application to Keyword Extraction From COVID-19 Tweets in Japan
Publicado: (2021) -
The pragmatic functions of emojis in Arabic tweets
por: Alharbi, Amjad, et al.
Publicado: (2023)