Cargando…

Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()

The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative magnetic resonance imaging (MRI) data into a bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Jarrett, Angela M., Hormuth, David A., Wu, Chengyue, Kazerouni, Anum S., Ekrut, David A., Virostko, John, Sorace, Anna G., DiCarlo, Julie C., Kowalski, Jeanne, Patt, Debra, Goodgame, Boone, Avery, Sarah, Yankeelov, Thomas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677708/
https://www.ncbi.nlm.nih.gov/pubmed/33197744
http://dx.doi.org/10.1016/j.neo.2020.10.011
_version_ 1783612030644649984
author Jarrett, Angela M.
Hormuth, David A.
Wu, Chengyue
Kazerouni, Anum S.
Ekrut, David A.
Virostko, John
Sorace, Anna G.
DiCarlo, Julie C.
Kowalski, Jeanne
Patt, Debra
Goodgame, Boone
Avery, Sarah
Yankeelov, Thomas E.
author_facet Jarrett, Angela M.
Hormuth, David A.
Wu, Chengyue
Kazerouni, Anum S.
Ekrut, David A.
Virostko, John
Sorace, Anna G.
DiCarlo, Julie C.
Kowalski, Jeanne
Patt, Debra
Goodgame, Boone
Avery, Sarah
Yankeelov, Thomas E.
author_sort Jarrett, Angela M.
collection PubMed
description The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative magnetic resonance imaging (MRI) data into a biophysical model to predict patient-specific treatment response of locally advanced breast cancer to neoadjuvant therapy. Diffusion-weighted and dynamic contrast-enhanced MRI data is collected prior to therapy, after 1 cycle of therapy, and at the completion of the first therapeutic regimen. The model is initialized and calibrated with the first 2 patient-specific MRI data sets to predict response at the third, which is then compared to patient outcomes (N = 18). The model's predictions for total cellularity, total volume, and the longest axis at the completion of the regimen are significant within expected measurement precision (P< 0.05) and strongly correlated with measured response (P < 0.01). Further, we use the model to investigate, in silico, a range of (practical) alternative treatment plans to achieve the greatest possible tumor control for each individual in a subgroup of patients (N = 13). The model identifies alternative dosing strategies predicted to achieve greater tumor control compared to the standard of care for 12 of 13 patients (P < 0.01). In summary, a predictive, mechanism-based mathematical model has demonstrated the ability to identify alternative treatment regimens that are forecasted to outperform the therapeutic regimens the patients clinically. This has important implications for clinical trial design with the opportunity to alter oncology care in the future.
format Online
Article
Text
id pubmed-7677708
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Neoplasia Press
record_format MEDLINE/PubMed
spelling pubmed-76777082020-12-07 Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()() Jarrett, Angela M. Hormuth, David A. Wu, Chengyue Kazerouni, Anum S. Ekrut, David A. Virostko, John Sorace, Anna G. DiCarlo, Julie C. Kowalski, Jeanne Patt, Debra Goodgame, Boone Avery, Sarah Yankeelov, Thomas E. Neoplasia Original article The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative magnetic resonance imaging (MRI) data into a biophysical model to predict patient-specific treatment response of locally advanced breast cancer to neoadjuvant therapy. Diffusion-weighted and dynamic contrast-enhanced MRI data is collected prior to therapy, after 1 cycle of therapy, and at the completion of the first therapeutic regimen. The model is initialized and calibrated with the first 2 patient-specific MRI data sets to predict response at the third, which is then compared to patient outcomes (N = 18). The model's predictions for total cellularity, total volume, and the longest axis at the completion of the regimen are significant within expected measurement precision (P< 0.05) and strongly correlated with measured response (P < 0.01). Further, we use the model to investigate, in silico, a range of (practical) alternative treatment plans to achieve the greatest possible tumor control for each individual in a subgroup of patients (N = 13). The model identifies alternative dosing strategies predicted to achieve greater tumor control compared to the standard of care for 12 of 13 patients (P < 0.01). In summary, a predictive, mechanism-based mathematical model has demonstrated the ability to identify alternative treatment regimens that are forecasted to outperform the therapeutic regimens the patients clinically. This has important implications for clinical trial design with the opportunity to alter oncology care in the future. Neoplasia Press 2020-11-14 /pmc/articles/PMC7677708/ /pubmed/33197744 http://dx.doi.org/10.1016/j.neo.2020.10.011 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original article
Jarrett, Angela M.
Hormuth, David A.
Wu, Chengyue
Kazerouni, Anum S.
Ekrut, David A.
Virostko, John
Sorace, Anna G.
DiCarlo, Julie C.
Kowalski, Jeanne
Patt, Debra
Goodgame, Boone
Avery, Sarah
Yankeelov, Thomas E.
Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
title Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
title_full Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
title_fullStr Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
title_full_unstemmed Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
title_short Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
title_sort evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data()()
topic Original article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677708/
https://www.ncbi.nlm.nih.gov/pubmed/33197744
http://dx.doi.org/10.1016/j.neo.2020.10.011
work_keys_str_mv AT jarrettangelam evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT hormuthdavida evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT wuchengyue evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT kazerounianums evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT ekrutdavida evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT virostkojohn evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT soraceannag evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT dicarlojuliec evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT kowalskijeanne evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT pattdebra evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT goodgameboone evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT averysarah evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata
AT yankeelovthomase evaluatingpatientspecificneoadjuvantregimensforbreastcancerviaamathematicalmodelconstrainedbyquantitativemagneticresonanceimagingdata