Cargando…
A generalized Robinson-Foulds distance for labeled trees
BACKGROUND: The Robinson-Foulds (RF) distance is a well-established measure between phylogenetic trees. Despite a lack of biological justification, it has the advantages of being a proper metric and being computable in linear time. For phylogenetic applications involving genes, however, a crucial as...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677779/ https://www.ncbi.nlm.nih.gov/pubmed/33208096 http://dx.doi.org/10.1186/s12864-020-07011-0 |
Sumario: | BACKGROUND: The Robinson-Foulds (RF) distance is a well-established measure between phylogenetic trees. Despite a lack of biological justification, it has the advantages of being a proper metric and being computable in linear time. For phylogenetic applications involving genes, however, a crucial aspect of the trees ignored by the RF metric is the type of the branching event (e.g. speciation, duplication, transfer, etc). RESULTS: We extend RF to trees with labeled internal nodes by including a node flip operation, alongside edge contractions and extensions. We explore properties of this extended RF distance in the case of a binary labeling. In particular, we show that contrary to the unlabeled case, an optimal edit path may require contracting “good” edges, i.e. edges shared between the two trees. CONCLUSIONS: We provide a 2-approximation algorithm which is shown to perform well empirically. Looking ahead, computing distances between labeled trees opens up a variety of new algorithmic directions.Implementation and simulations available at https://github.com/DessimozLab/pylabeledrf. |
---|