Cargando…
MicroRNA-disease association prediction by matrix tri-factorization
BACKGROUND: Biological evidence has shown that microRNAs(miRNAs) are greatly implicated in various biological progresses involved in human diseases. The identification of miRNA-disease associations(MDAs) is beneficial to disease diagnosis as well as treatment. Due to the high costs of biological exp...
Autores principales: | Li, Huiran, Guo, Yin, Cai, Menglan, Li, Limin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677824/ https://www.ncbi.nlm.nih.gov/pubmed/33208088 http://dx.doi.org/10.1186/s12864-020-07006-x |
Ejemplares similares
-
Integrative subspace clustering by common and specific decomposition for applications on cancer subtype identification
por: Guo, Yin, et al.
Publicado: (2019) -
SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization
por: Li, Lei, et al.
Publicado: (2021) -
Deep belief network–Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction
por: Ding, Yulian, et al.
Publicado: (2020) -
Drug repositioning via matrix completion with multi‐view side information
por: Hao, Yunda, et al.
Publicado: (2019) -
PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach
por: Ha, Jihwan, et al.
Publicado: (2019)