Cargando…
Characterizing infectious disease progression through discrete states using hidden Markov models
Infectious disease management relies on accurate characterization of disease progression so that transmission can be prevented. Slowly progressing infectious diseases can be difficult to characterize because of a latency period between the time an individual is infected and when they show clinical s...
Autores principales: | Ceres, Kristina M., Schukken, Ynte H., Gröhn, Yrjö T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678993/ https://www.ncbi.nlm.nih.gov/pubmed/33216809 http://dx.doi.org/10.1371/journal.pone.0242683 |
Ejemplares similares
-
A data-driven individual-based model of infectious disease in livestock operation: A validation study for paratuberculosis
por: Al-Mamun, Mohammad A., et al.
Publicado: (2018) -
Effects of pathogen-specific clinical mastitis occurrence in the first 100 days of lactation 1 on future mastitis occurrence in Holstein dairy cows: An observational study
por: Hertl, Julia A., et al.
Publicado: (2023) -
A transition-constrained discrete hidden Markov model for automatic sleep staging
por: Pan, Shing-Tai, et al.
Publicado: (2012) -
Handling underlying discrete variables with bivariate mixed hidden Markov models in NONMEM
por: Brekkan, A., et al.
Publicado: (2019) -
Who infects whom?—Reconstructing infection chains of Mycobacterium avium ssp. paratuberculosis in an endemically infected dairy herd by use of genomic data
por: Nigsch, Annette, et al.
Publicado: (2021)