Cargando…

Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov-Bohm phases

Electron interferometry via phase-contrast microscopy, holography, or picodiffraction can provide a direct visualization of the static electric and magnetic fields inside or around a material at subatomic precision, but understanding the electromagnetic origin of light-matter interaction requires ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohler, K. J., Ehberger, D., Gronwald, I., Lange, C., Huber, R., Baum, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679170/
https://www.ncbi.nlm.nih.gov/pubmed/33219030
http://dx.doi.org/10.1126/sciadv.abc8804
Descripción
Sumario:Electron interferometry via phase-contrast microscopy, holography, or picodiffraction can provide a direct visualization of the static electric and magnetic fields inside or around a material at subatomic precision, but understanding the electromagnetic origin of light-matter interaction requires time resolution as well. Here, we demonstrate that pump-probe electron diffraction with all-optically compressed electron pulses can capture dynamic electromagnetic potentials in a nanophotonic material with sub-light-cycle time resolution via centrosymmetry-violating Bragg spot dynamics. The origin of this effect is a sizable quantum mechanical phase shift that the electron de Broglie wave obtains from the oscillating electromagnetic potentials within less than 1 fs. Coherent electron imaging and scattering can therefore reveal the electromagnetic foundations of light-matter interaction on the level of the cycles of light.