Cargando…
Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov-Bohm phases
Electron interferometry via phase-contrast microscopy, holography, or picodiffraction can provide a direct visualization of the static electric and magnetic fields inside or around a material at subatomic precision, but understanding the electromagnetic origin of light-matter interaction requires ti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679170/ https://www.ncbi.nlm.nih.gov/pubmed/33219030 http://dx.doi.org/10.1126/sciadv.abc8804 |
Sumario: | Electron interferometry via phase-contrast microscopy, holography, or picodiffraction can provide a direct visualization of the static electric and magnetic fields inside or around a material at subatomic precision, but understanding the electromagnetic origin of light-matter interaction requires time resolution as well. Here, we demonstrate that pump-probe electron diffraction with all-optically compressed electron pulses can capture dynamic electromagnetic potentials in a nanophotonic material with sub-light-cycle time resolution via centrosymmetry-violating Bragg spot dynamics. The origin of this effect is a sizable quantum mechanical phase shift that the electron de Broglie wave obtains from the oscillating electromagnetic potentials within less than 1 fs. Coherent electron imaging and scattering can therefore reveal the electromagnetic foundations of light-matter interaction on the level of the cycles of light. |
---|