Cargando…

Patient Triage by Topic Modeling of Referral Letters: Feasibility Study

BACKGROUND: Musculoskeletal conditions are managed within primary care, but patients can be referred to secondary care if a specialist opinion is required. The ever-increasing demand for health care resources emphasizes the need to streamline care pathways with the ultimate aim of ensuring that pati...

Descripción completa

Detalles Bibliográficos
Autores principales: Spasic, Irena, Button, Kate
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679210/
https://www.ncbi.nlm.nih.gov/pubmed/33155985
http://dx.doi.org/10.2196/21252
_version_ 1783612295347175424
author Spasic, Irena
Button, Kate
author_facet Spasic, Irena
Button, Kate
author_sort Spasic, Irena
collection PubMed
description BACKGROUND: Musculoskeletal conditions are managed within primary care, but patients can be referred to secondary care if a specialist opinion is required. The ever-increasing demand for health care resources emphasizes the need to streamline care pathways with the ultimate aim of ensuring that patients receive timely and optimal care. Information contained in referral letters underpins the referral decision-making process but is yet to be explored systematically for the purposes of treatment prioritization for musculoskeletal conditions. OBJECTIVE: This study aims to explore the feasibility of using natural language processing and machine learning to automate the triage of patients with musculoskeletal conditions by analyzing information from referral letters. Specifically, we aim to determine whether referral letters can be automatically assorted into latent topics that are clinically relevant, that is, considered relevant when prescribing treatments. Here, clinical relevance is assessed by posing 2 research questions. Can latent topics be used to automatically predict treatment? Can clinicians interpret latent topics as cohorts of patients who share common characteristics or experiences such as medical history, demographics, and possible treatments? METHODS: We used latent Dirichlet allocation to model each referral letter as a finite mixture over an underlying set of topics and model each topic as an infinite mixture over an underlying set of topic probabilities. The topic model was evaluated in the context of automating patient triage. Given a set of treatment outcomes, a binary classifier was trained for each outcome using previously extracted topics as the input features of the machine learning algorithm. In addition, a qualitative evaluation was performed to assess the human interpretability of topics. RESULTS: The prediction accuracy of binary classifiers outperformed the stratified random classifier by a large margin, indicating that topic modeling could be used to predict the treatment, thus effectively supporting patient triage. The qualitative evaluation confirmed the high clinical interpretability of the topic model. CONCLUSIONS: The results established the feasibility of using natural language processing and machine learning to automate triage of patients with knee or hip pain by analyzing information from their referral letters.
format Online
Article
Text
id pubmed-7679210
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-76792102020-11-23 Patient Triage by Topic Modeling of Referral Letters: Feasibility Study Spasic, Irena Button, Kate JMIR Med Inform Original Paper BACKGROUND: Musculoskeletal conditions are managed within primary care, but patients can be referred to secondary care if a specialist opinion is required. The ever-increasing demand for health care resources emphasizes the need to streamline care pathways with the ultimate aim of ensuring that patients receive timely and optimal care. Information contained in referral letters underpins the referral decision-making process but is yet to be explored systematically for the purposes of treatment prioritization for musculoskeletal conditions. OBJECTIVE: This study aims to explore the feasibility of using natural language processing and machine learning to automate the triage of patients with musculoskeletal conditions by analyzing information from referral letters. Specifically, we aim to determine whether referral letters can be automatically assorted into latent topics that are clinically relevant, that is, considered relevant when prescribing treatments. Here, clinical relevance is assessed by posing 2 research questions. Can latent topics be used to automatically predict treatment? Can clinicians interpret latent topics as cohorts of patients who share common characteristics or experiences such as medical history, demographics, and possible treatments? METHODS: We used latent Dirichlet allocation to model each referral letter as a finite mixture over an underlying set of topics and model each topic as an infinite mixture over an underlying set of topic probabilities. The topic model was evaluated in the context of automating patient triage. Given a set of treatment outcomes, a binary classifier was trained for each outcome using previously extracted topics as the input features of the machine learning algorithm. In addition, a qualitative evaluation was performed to assess the human interpretability of topics. RESULTS: The prediction accuracy of binary classifiers outperformed the stratified random classifier by a large margin, indicating that topic modeling could be used to predict the treatment, thus effectively supporting patient triage. The qualitative evaluation confirmed the high clinical interpretability of the topic model. CONCLUSIONS: The results established the feasibility of using natural language processing and machine learning to automate triage of patients with knee or hip pain by analyzing information from their referral letters. JMIR Publications 2020-11-06 /pmc/articles/PMC7679210/ /pubmed/33155985 http://dx.doi.org/10.2196/21252 Text en ©Irena Spasic, Kate Button. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 06.11.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Spasic, Irena
Button, Kate
Patient Triage by Topic Modeling of Referral Letters: Feasibility Study
title Patient Triage by Topic Modeling of Referral Letters: Feasibility Study
title_full Patient Triage by Topic Modeling of Referral Letters: Feasibility Study
title_fullStr Patient Triage by Topic Modeling of Referral Letters: Feasibility Study
title_full_unstemmed Patient Triage by Topic Modeling of Referral Letters: Feasibility Study
title_short Patient Triage by Topic Modeling of Referral Letters: Feasibility Study
title_sort patient triage by topic modeling of referral letters: feasibility study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679210/
https://www.ncbi.nlm.nih.gov/pubmed/33155985
http://dx.doi.org/10.2196/21252
work_keys_str_mv AT spasicirena patienttriagebytopicmodelingofreferrallettersfeasibilitystudy
AT buttonkate patienttriagebytopicmodelingofreferrallettersfeasibilitystudy