Cargando…
Fast body part segmentation and tracking of neonatal video data using deep learning
Photoplethysmography imaging (PPGI) for non-contact monitoring of preterm infants in the neonatal intensive care unit (NICU) is a promising technology, as it could reduce medical adhesive-related skin injuries and associated complications. For practical implementations of PPGI, a region of interest...
Autores principales: | Antink, Christoph Hoog, Ferreira, Joana Carlos Mesquita, Paul, Michael, Lyra, Simon, Heimann, Konrad, Karthik, Srinivasa, Joseph, Jayaraj, Jayaraman, Kumutha, Orlikowsky, Thorsten, Sivaprakasam, Mohanasankar, Leonhardt, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679364/ https://www.ncbi.nlm.nih.gov/pubmed/33094430 http://dx.doi.org/10.1007/s11517-020-02251-4 |
Ejemplares similares
-
Camera fusion for real-time temperature monitoring of neonates using deep learning
por: Lyra, Simon, et al.
Publicado: (2022) -
Multi-modal body part segmentation of infants using deep learning
por: Voss, Florian, et al.
Publicado: (2023) -
A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum
por: Antink, Christoph Hoog, et al.
Publicado: (2019) -
Neonatal non-contact respiratory monitoring based on real-time infrared thermography
por: Abbas, Abbas K, et al.
Publicado: (2011) -
Spatio-temporal and -spectral feature maps in photoplethysmography imaging and infrared thermograph
por: Paul, Michael, et al.
Publicado: (2021)