Cargando…
The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading
Automated detection of exudates from fundus images plays an important role in diabetic retinopathy (DR) screening and evaluation, for which supervised or semi-supervised learning methods are typically preferred. However, a potential limitation of supervised and semi-supervised learning based detecti...
Autores principales: | Lin, Li, Li, Meng, Huang, Yijin, Cheng, Pujin, Xia, Honghui, Wang, Kai, Yuan, Jin, Tang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679367/ https://www.ncbi.nlm.nih.gov/pubmed/33219237 http://dx.doi.org/10.1038/s41597-020-00755-0 |
Ejemplares similares
-
The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers
por: Deng, Lijie, et al.
Publicado: (2020) -
Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation
por: Huang, Yijin, et al.
Publicado: (2023) -
Image dataset for benchmarking automated fish detection and classification algorithms
por: Francescangeli, Marco, et al.
Publicado: (2023) -
Automated Construction of a Photocatalysis Dataset for Water-Splitting Applications
por: Isazawa, Taketomo, et al.
Publicado: (2023) -
A dataset on energy efficiency grade of white goods in mainland China at regional and household levels
por: Li, Zonghan, et al.
Publicado: (2023)