Cargando…
Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience
Machine learning methods provide powerful tools to map physical measurements to scientific categories. But are such methods suitable for discovering the ground truth about psychological categories? We use the science of emotion as a test case to explore this question. In studies of emotion, research...
Autores principales: | Azari, Bahar, Westlin, Christiana, Satpute, Ajay B., Hutchinson, J. Benjamin, Kragel, Philip A., Hoemann, Katie, Khan, Zulqarnain, Wormwood, Jolie B., Quigley, Karen S., Erdogmus, Deniz, Dy, Jennifer, Brooks, Dana H., Barrett, Lisa Feldman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679385/ https://www.ncbi.nlm.nih.gov/pubmed/33219270 http://dx.doi.org/10.1038/s41598-020-77117-8 |
Ejemplares similares
-
Author Correction: Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience
por: Azari, Bahar, et al.
Publicado: (2021) -
Context-aware experience sampling reveals the scale of variation in affective experience
por: Hoemann, Katie, et al.
Publicado: (2020) -
Author Correction: Context-aware experience sampling reveals the scale of variation in affective experience
por: Hoemann, Katie, et al.
Publicado: (2021) -
Multimodal, Idiographic Ambulatory Sensing Will Transform our Understanding of Emotion
por: Hoemann, Katie, et al.
Publicado: (2023) -
Applying the Theory of Constructed Emotion to Police Decision Making
por: Fridman, Joseph, et al.
Publicado: (2019)