Cargando…
Machine learning to predict early TNF inhibitor users in patients with ankylosing spondylitis
We aim to generate an artificial neural network (ANN) model to predict early TNF inhibitor users in patients with ankylosing spondylitis. The baseline demographic and laboratory data of patients who visited Samsung Medical Center rheumatology clinic from Dec. 2003 to Sep. 2018 were analyzed. Patient...
Autores principales: | Lee, Seulkee, Eun, Yeonghee, Kim, Hyungjin, Cha, Hoon-Suk, Koh, Eun-Mi, Lee, Jaejoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679386/ https://www.ncbi.nlm.nih.gov/pubmed/33219239 http://dx.doi.org/10.1038/s41598-020-75352-7 |
Ejemplares similares
-
Machine learning-based prediction model for responses of bDMARDs in patients with rheumatoid arthritis and ankylosing spondylitis
por: Lee, Seulkee, et al.
Publicado: (2021) -
Characteristics of hip involvement in patients with ankylosing spondylitis in Korea
por: Jeong, Hyemin, et al.
Publicado: (2017) -
Predictive factors of radiographic progression in ankylosing spondylitis
por: Kim, Hyungjin, et al.
Publicado: (2015) -
Drug survival of tumor necrosis factor α inhibitors in patients with ankylosing spondylitis in Korea
por: Jeong, Hyemin, et al.
Publicado: (2018) -
Increased risk of malignancy in patients with Takayasu’s arteritis: a population-based cohort study in Korea
por: Lee, Seulkee, et al.
Publicado: (2022)