Cargando…

Polyrhythmic foraging and competitive coexistence

The current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coex...

Descripción completa

Detalles Bibliográficos
Autor principal: Mougi, Akihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679447/
https://www.ncbi.nlm.nih.gov/pubmed/33219304
http://dx.doi.org/10.1038/s41598-020-77483-3
Descripción
Sumario:The current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coexistence theory-diversity of biological rhythms. I show that diversity in activity cycles plays a key role in coexistence of competing species, using a two predator-one prey system with diel, monthly, and annual cycles for predator foraging. Competitive exclusion always occurs without activity cycles. Activity cycles do, however, allow for coexistence. Furthermore, each activity cycle plays a different role in coexistence, and coupling of activity cycles can synergistically broaden the coexistence region. Thus, with all activity cycles, the coexistence region is maximal. The present results suggest that polyrhythmic changes in biological activity in response to the earth’s rotation and revolution are key to competitive coexistence. Also, temporal niche shifts caused by environmental changes can easily eliminate competitive coexistence.