Cargando…

Comparative Assessment of Antioxidant, Anti-Diabetic and Cytotoxic Effects of Three Peel/Shell Food Waste Extract-Mediated Silver Nanoparticles

BACKGROUND: The natural food waste peels/shells discarded as waste materials are ample sources of natural bioactive compounds. The natural food waste mediated silver (Ag) nanoparticle (NPs) synthesis will be advantageous over chemical synthesis. MATERIALS AND METHODS: Using the various phytochemical...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Gitishree, Shin, Han-Seung, Patra, Jayanta Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680163/
https://www.ncbi.nlm.nih.gov/pubmed/33235452
http://dx.doi.org/10.2147/IJN.S277625
Descripción
Sumario:BACKGROUND: The natural food waste peels/shells discarded as waste materials are ample sources of natural bioactive compounds. The natural food waste mediated silver (Ag) nanoparticle (NPs) synthesis will be advantageous over chemical synthesis. MATERIALS AND METHODS: Using the various phytochemical-rich ripe P. americana peel (PAP), fresh Beta vulgaris peel (BVP), and rawArachis hypogaea shell (AHS) extracts, the bio-synthesis of PAP-AgNPs, BVP-AgNPs, and AHS-AgNPs, respectively, were carried out and its characterization was completed by standard procedures. The three biosynthesized AgNP’s multiple biological effects were accomplished by evaluating their cytotoxicity, antidiabetic, and antioxidant effects. RESULTS: The biosynthesis of the three generated Ag nanoparticles was confirmed through UV-vis spectrum analysis while the X-ray diffraction outlines revealed the generated AgNPs nature. The morphological structure and elemental information of the three AgNPs were obtained through SEM (scanning electron microscopy) and EDX (energy-dispersive X-ray) study. Multiple biological assays exhibited that the three generated AgNPs have significant cytotoxic, antidiabetic, and moderate antioxidant activity. In a comparative analysis, the PAP-AgNPs displayed higher anticancer potential than BVP and AHS-AgNPs, whereas AHS-AgNPs exhibited a higher antidiabetic effect with the lowest IC(50) value (1.68 µg/mL) than PAP and BVP AgNPs. All three generated AgNPs displayed moderate antioxidant effects, among them BVP-AgNPs were more effective than PAP and AHS AgNPs. More than two effects of the three biosynthesized AgNPs specifies that they have ample perspective in therapeutic applications in pharmaceutical and other related industries in controlling cancer and diabetes.