Cargando…

An Appraisal of the Pharmacokinetic and Pharmacodynamic Properties of Meropenem-Vaborbactam

Carbapenem-resistant gram-negative pathogens remain an urgent public health threat, and safe, effective treatment options are limited. Although several agents are now available to combat these infections, meropenem-vaborbactam was the first to combine a novel, cyclic, boronic acid-based, β-lactamase...

Descripción completa

Detalles Bibliográficos
Autores principales: Wenzler, Eric, Scoble, Patrick J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Healthcare 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680462/
https://www.ncbi.nlm.nih.gov/pubmed/33025557
http://dx.doi.org/10.1007/s40121-020-00344-z
Descripción
Sumario:Carbapenem-resistant gram-negative pathogens remain an urgent public health threat, and safe, effective treatment options are limited. Although several agents are now available to combat these infections, meropenem-vaborbactam was the first to combine a novel, cyclic, boronic acid-based, β-lactamase inhibitor with a carbapenem backbone. Vaborbactam emanated from a discovery program specifically designed to identify candidate β-lactamase inhibitors with biochemical, microbiologic, and pharmacologic properties optimized for use in conjunction with a carbapenem. Meropenem was selected as the ideal carbapenem given its broad-spectrum in vitro activity, well established safety profile, and proven efficacy in the treatment of serious gram-negative infections. The combination has demonstrated potent in vitro activity against resistant gram-negative pathogens, particularly KPC-producing Klebsiella pneumoniae (MIC(50) values typically ≤ 0.06 mg/l). Importantly, the pharmacokinetic (PK) profiles of the two agents are well matched, and the approved optimized dosing regimen of 4 g every 8 h (Q8h) as a 3-h infusion provides reliable probability of target attainment against the majority of commonly encountered carbapenem-resistant Enterobacteriaceae (CRE). Robust in vitro and in vivo PK/pharmacodynamic (PD) data support the ability of this dosing regimen to achieve specified PK/PD targets for both bactericidal activity and prevention of resistance among pathogens with MICs up to 8 mg/l. This concerted effort into optimizing the PK and PD parameters of both the β-lactam and β-lactamase inhibitor alone and in combination contributed to the clinical success of meropenem-vaborbactam demonstrated in phase 3 trials in patients with complicated urinary tract infections (cUTI), including acute pyelonephritis (AP), and serious CRE infections. As the use of meropenem-vaborbactam increases concomitantly with the prevalence of KPC-producing CRE, continued pharmacovigilance and antimicrobial stewardship efforts will be of upmost importance to ensure that these PK/PD efforts translate into improved patient outcomes.