Cargando…

SARS-CoV-2 analysis on environmental surfaces collected in an intensive care unit: keeping Ernest Shackleton’s spirit

BACKGROUND: Intensive care unit workers are at high risk of acquiring COVID-19 infection, especially when performing invasive techniques and certain procedures that generate aerosols (< 5 μm). Therefore, one of the objectives of the health systems should implement safety practices to minimize the...

Descripción completa

Detalles Bibliográficos
Autores principales: Escudero, Dolores, Boga, José Antonio, Fernández, Javier, Forcelledo, Lorena, Balboa, Salvador, Albillos, Rodrigo, Astola, Iván, García-Prieto, Emilio, Álvarez-Argüelles, Marta Elena, Martín, Gabriel, Jiménez, Josu, Vázquez, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680661/
https://www.ncbi.nlm.nih.gov/pubmed/33225382
http://dx.doi.org/10.1186/s40635-020-00349-5
Descripción
Sumario:BACKGROUND: Intensive care unit workers are at high risk of acquiring COVID-19 infection, especially when performing invasive techniques and certain procedures that generate aerosols (< 5 μm). Therefore, one of the objectives of the health systems should implement safety practices to minimize the risk of contagion among these health professionals. Monitoring environmental contamination of SARS-CoV-2 may help to determine the potential of the environment as a transmission medium in an area highly exposed to SARS-CoV-2, such as an intensive care unit. The objective of the study was to analyze the environmental contamination by SARS-CoV-2 on surfaces collected in an intensive care unit, which is dedicated exclusively to the care of patients with COVID-19 and equipped with negative pressure of – 10 Pa and an air change rate of 20 cycles per hour. Furthermore, all ICU workers were tested for COVID-19 by quantitative RT-PCR and ELISA methods. RESULTS: A total of 102 samples (72 collected with pre-moistened swabs used for collection of nasopharyngeal exudates and 30 with moistened wipes used in the environmental microbiological control of the food industry) were obtained from ventilators, monitors, perfusion pumps, bed rails, lab benches, containers of personal protective equipment, computer keyboards and mice, telephones, workers’ shoes, floor, and other areas of close contact with COVID-19 patients and healthcare professionals who cared for them. The analysis by quantitative RT-PCR showed no detection of SARS-CoV-2 genome in environmental samples collected by any of the two methods described. Furthermore, none of the 237 ICU workers was infected by the virus. CONCLUSIONS: Presence of SARS-CoV-2 on the ICU surfaces could not be determined supporting that a strict cleaning protocol with sodium hypochlorite, a high air change rate, and a negative pressure in the ICU are effective in preventing environmental contamination. These facts together with the protection measures used could also explain the absence of contagion among staff inside ICUs.