Cargando…

Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior

A major challenge in current neuroscience is to understand the concerted functioning of distinct neurons involved in a particular behavior. This goal first requires achieving an adequate characterization of the behavior as well as an identification of the key neuronal elements associated with that a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cámera, Alejandro, Belluscio, Mariano Andres, Tomsic, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680727/
https://www.ncbi.nlm.nih.gov/pubmed/33240056
http://dx.doi.org/10.3389/fnbeh.2020.592309
_version_ 1783612490180984832
author Cámera, Alejandro
Belluscio, Mariano Andres
Tomsic, Daniel
author_facet Cámera, Alejandro
Belluscio, Mariano Andres
Tomsic, Daniel
author_sort Cámera, Alejandro
collection PubMed
description A major challenge in current neuroscience is to understand the concerted functioning of distinct neurons involved in a particular behavior. This goal first requires achieving an adequate characterization of the behavior as well as an identification of the key neuronal elements associated with that action. Such conditions have been considerably attained for the escape response to visual stimuli in the crab Neohelice. During the last two decades a combination of in vivo intracellular recordings and staining with behavioral experiments and modeling, led us to postulate that a microcircuit formed by four classes of identified lobula giant (LG) neurons operates as a decision-making node for several important visually-guided components of the crab’s escape behavior. However, these studies were done by recording LG neurons individually. To investigate the combined operations performed by the group of LG neurons, we began to use multielectrode recordings. Here we describe the methodology and show results of simultaneously recorded activity from different lobula elements. The different LG classes can be distinguished by their differential responses to particular visual stimuli. By comparing the response profiles of extracellular recorded units with intracellular recorded responses to the same stimuli, two of the four LG classes could be faithfully recognized. Additionally, we recorded units with stimulus preferences different from those exhibited by the LG neurons. Among these, we found units sensitive to optic flow with marked directional preference. Units classified within a single group according to their response profiles exhibited similar spike waveforms and similar auto-correlograms, but which, on the other hand, differed from those of groups with different response profiles. Additionally, cross-correlograms revealed excitatory as well as inhibitory relationships between recognizable units. Thus, the extracellular multielectrode methodology allowed us to stably record from previously identified neurons as well as from undescribed elements of the brain of the crab. Moreover, simultaneous multiunit recording allowed beginning to disclose the connections between central elements of the visual circuits. This work provides an entry point into studying the neural networks underlying the control of visually guided behaviors in the crab brain.
format Online
Article
Text
id pubmed-7680727
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-76807272020-11-24 Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior Cámera, Alejandro Belluscio, Mariano Andres Tomsic, Daniel Front Behav Neurosci Behavioral Neuroscience A major challenge in current neuroscience is to understand the concerted functioning of distinct neurons involved in a particular behavior. This goal first requires achieving an adequate characterization of the behavior as well as an identification of the key neuronal elements associated with that action. Such conditions have been considerably attained for the escape response to visual stimuli in the crab Neohelice. During the last two decades a combination of in vivo intracellular recordings and staining with behavioral experiments and modeling, led us to postulate that a microcircuit formed by four classes of identified lobula giant (LG) neurons operates as a decision-making node for several important visually-guided components of the crab’s escape behavior. However, these studies were done by recording LG neurons individually. To investigate the combined operations performed by the group of LG neurons, we began to use multielectrode recordings. Here we describe the methodology and show results of simultaneously recorded activity from different lobula elements. The different LG classes can be distinguished by their differential responses to particular visual stimuli. By comparing the response profiles of extracellular recorded units with intracellular recorded responses to the same stimuli, two of the four LG classes could be faithfully recognized. Additionally, we recorded units with stimulus preferences different from those exhibited by the LG neurons. Among these, we found units sensitive to optic flow with marked directional preference. Units classified within a single group according to their response profiles exhibited similar spike waveforms and similar auto-correlograms, but which, on the other hand, differed from those of groups with different response profiles. Additionally, cross-correlograms revealed excitatory as well as inhibitory relationships between recognizable units. Thus, the extracellular multielectrode methodology allowed us to stably record from previously identified neurons as well as from undescribed elements of the brain of the crab. Moreover, simultaneous multiunit recording allowed beginning to disclose the connections between central elements of the visual circuits. This work provides an entry point into studying the neural networks underlying the control of visually guided behaviors in the crab brain. Frontiers Media S.A. 2020-11-09 /pmc/articles/PMC7680727/ /pubmed/33240056 http://dx.doi.org/10.3389/fnbeh.2020.592309 Text en Copyright © 2020 Cámera, Belluscio and Tomsic. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Behavioral Neuroscience
Cámera, Alejandro
Belluscio, Mariano Andres
Tomsic, Daniel
Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior
title Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior
title_full Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior
title_fullStr Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior
title_full_unstemmed Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior
title_short Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior
title_sort multielectrode recordings from identified neurons involved in visually elicited escape behavior
topic Behavioral Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680727/
https://www.ncbi.nlm.nih.gov/pubmed/33240056
http://dx.doi.org/10.3389/fnbeh.2020.592309
work_keys_str_mv AT cameraalejandro multielectroderecordingsfromidentifiedneuronsinvolvedinvisuallyelicitedescapebehavior
AT bellusciomarianoandres multielectroderecordingsfromidentifiedneuronsinvolvedinvisuallyelicitedescapebehavior
AT tomsicdaniel multielectroderecordingsfromidentifiedneuronsinvolvedinvisuallyelicitedescapebehavior