Cargando…

Evaluating the impact of stay-at-home orders on the time to reach the peak burden of Covid-19 cases and deaths: does timing matter?

BACKGROUND: The economic, psychological, and social impact of pandemics and social distancing measures prompt the urgent need to determine the efficacy of non-pharmaceutical interventions (NPIs), especially those considered most stringent such as stay-at-home and self-isolation mandates. This study...

Descripción completa

Detalles Bibliográficos
Autores principales: Medline, Alexandra, Hayes, Lamar, Valdez, Katia, Hayashi, Ami, Vahedi, Farnoosh, Capell, Will, Sonnenberg, Jake, Glick, Zoe, Klausner, Jeffrey D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680980/
https://www.ncbi.nlm.nih.gov/pubmed/33225945
http://dx.doi.org/10.1186/s12889-020-09817-9
Descripción
Sumario:BACKGROUND: The economic, psychological, and social impact of pandemics and social distancing measures prompt the urgent need to determine the efficacy of non-pharmaceutical interventions (NPIs), especially those considered most stringent such as stay-at-home and self-isolation mandates. This study focuses specifically on the impact of stay-at-home orders, both nationally and internationally, on the control of COVID-19. METHODS: We conducted an observational analysis from April to May 2020 and included both countries and US states with known stay-at-home orders. Our primary exposure was the time between the date of the first reported case of COVID-19 to an implemented stay-at-home mandate for each region. Our primary outcomes were the time from the first reported case to the highest number of daily cases and daily deaths. We conducted linear regression analyses, controlling for the case rate of the outbreak in each respective region. RESULTS: For countries and US states, a longer period of time between the first reported case and stay-at-home mandates was associated with a longer time to reach both the peak daily case and death counts. The largest effect was among regions classified as the latest 10% to implement a mandate, which in the US, predicted an extra 35.3 days (95% CI: 18.2, 52.5) to the peak number of cases, and 38.3 days (95% CI: 23.6, 53.0) to the peak number of deaths. CONCLUSIONS: Our study supports the association between the timing of stay-at-home orders and the time to peak case and death counts for both countries and US states. Regions in which mandates were implemented late experienced a prolonged duration to reaching both peak daily case and death counts.