Cargando…
Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA
In bacteria, mRNA decay is a major mechanism for regulating gene expression. In Escherichia coli, mRNA decay initiates with endonucleolytic cleavage by RNase E. Translating ribosomes impede RNase E cleavage, thus providing stability to mRNA. In transcripts containing multiple cistrons, the translati...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681074/ https://www.ncbi.nlm.nih.gov/pubmed/33240931 http://dx.doi.org/10.3389/fmolb.2020.586413 |
_version_ | 1783612561082548224 |
---|---|
author | Jeon, Heung Jin Kang, Changjo N, Monford Paul Abishek Lee, Yonho Wang, Xun Chattoraj, Dhruba K. Lim, Heon M. |
author_facet | Jeon, Heung Jin Kang, Changjo N, Monford Paul Abishek Lee, Yonho Wang, Xun Chattoraj, Dhruba K. Lim, Heon M. |
author_sort | Jeon, Heung Jin |
collection | PubMed |
description | In bacteria, mRNA decay is a major mechanism for regulating gene expression. In Escherichia coli, mRNA decay initiates with endonucleolytic cleavage by RNase E. Translating ribosomes impede RNase E cleavage, thus providing stability to mRNA. In transcripts containing multiple cistrons, the translation of each cistron initiates separately. The effect of internal translation initiations on the decay of polycistronic transcripts remains unknown, which we have investigated here using the four-cistron galETKM transcript. We find that RNase E cleaves a few nucleotides (14–36) upstream of the translation initiation site of each cistron, generating decay intermediates galTKM, galKM, and galM mRNA with fewer but full cistrons. Blocking translation initiation reduced stability, particularly of the mutated cistrons and when they were the 5′-most cistrons. This indicates that, together with translation failure, the location of the cistron is important for its elimination. The instability of the 5′-most cistron did not propagate to the downstream cistrons, possibly due to translation initiation there. Cistron elimination from the 5′ end was not always sequential, indicating that RNase E can also directly access a ribosome-free internal cistron. The finding in gal operon of mRNA decay by cistron elimination appears common in E. coli and Salmonella. |
format | Online Article Text |
id | pubmed-7681074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76810742020-11-24 Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA Jeon, Heung Jin Kang, Changjo N, Monford Paul Abishek Lee, Yonho Wang, Xun Chattoraj, Dhruba K. Lim, Heon M. Front Mol Biosci Molecular Biosciences In bacteria, mRNA decay is a major mechanism for regulating gene expression. In Escherichia coli, mRNA decay initiates with endonucleolytic cleavage by RNase E. Translating ribosomes impede RNase E cleavage, thus providing stability to mRNA. In transcripts containing multiple cistrons, the translation of each cistron initiates separately. The effect of internal translation initiations on the decay of polycistronic transcripts remains unknown, which we have investigated here using the four-cistron galETKM transcript. We find that RNase E cleaves a few nucleotides (14–36) upstream of the translation initiation site of each cistron, generating decay intermediates galTKM, galKM, and galM mRNA with fewer but full cistrons. Blocking translation initiation reduced stability, particularly of the mutated cistrons and when they were the 5′-most cistrons. This indicates that, together with translation failure, the location of the cistron is important for its elimination. The instability of the 5′-most cistron did not propagate to the downstream cistrons, possibly due to translation initiation there. Cistron elimination from the 5′ end was not always sequential, indicating that RNase E can also directly access a ribosome-free internal cistron. The finding in gal operon of mRNA decay by cistron elimination appears common in E. coli and Salmonella. Frontiers Media S.A. 2020-11-06 /pmc/articles/PMC7681074/ /pubmed/33240931 http://dx.doi.org/10.3389/fmolb.2020.586413 Text en Copyright © 2020 Jeon, Kang, N, Lee, Wang, Chattoraj and Lim. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Jeon, Heung Jin Kang, Changjo N, Monford Paul Abishek Lee, Yonho Wang, Xun Chattoraj, Dhruba K. Lim, Heon M. Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA |
title | Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA |
title_full | Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA |
title_fullStr | Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA |
title_full_unstemmed | Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA |
title_short | Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA |
title_sort | translation initiation control of rnase e-mediated decay of polycistronic gal mrna |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681074/ https://www.ncbi.nlm.nih.gov/pubmed/33240931 http://dx.doi.org/10.3389/fmolb.2020.586413 |
work_keys_str_mv | AT jeonheungjin translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna AT kangchangjo translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna AT nmonfordpaulabishek translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna AT leeyonho translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna AT wangxun translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna AT chattorajdhrubak translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna AT limheonm translationinitiationcontrolofrnaseemediateddecayofpolycistronicgalmrna |