Cargando…
A Novel Machine Learning-derived Radiomic Signature of the Whole Lung Differentiates Stable From Progressive COVID-19 Infection: A Retrospective Cohort Study
OBJECTIVE: This study aimed to use the radiomics signatures of a machine learning-based tool to evaluate the prognosis of patients with coronavirus disease 2019 (COVID-19) infection. METHODS: The clinical and imaging data of 64 patients with confirmed diagnoses of COVID-19 were retrospectively selec...
Autores principales: | Fu, Liping, Li, Yongchou, Cheng, Aiping, Pang, PeiPei, Shu, Zhenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682797/ https://www.ncbi.nlm.nih.gov/pubmed/32555006 http://dx.doi.org/10.1097/RTI.0000000000000544 |
Ejemplares similares
-
Hippocampus Radiomic Biomarkers for the Diagnosis of Amnestic Mild Cognitive Impairment: A Machine Learning Method
por: Feng, Qi, et al.
Publicado: (2019) -
An Integrative Nomogram for Identifying Early-Stage Parkinson's Disease Using Non-motor Symptoms and White Matter-Based Radiomics Biomarkers From Whole-Brain MRI
por: Shu, Zhenyu, et al.
Publicado: (2020) -
Prediction of the progression from mild cognitive impairment to Alzheimer’s disease using a radiomics-integrated model
por: Shu, Zhen-Yu, et al.
Publicado: (2021) -
The Role of Preoperative Computed Tomography Radiomics in Distinguishing Benign and Malignant Tumors of the Parotid Gland
por: Xu, Yuyun, et al.
Publicado: (2021) -
MRI-Based Radiomics Models for Predicting Risk Classification of Gastrointestinal Stromal Tumors
por: Mao, Haijia, et al.
Publicado: (2021)