Cargando…
Deep learning predicts short non-coding RNA functions from only raw sequence data
Small non-coding RNAs (ncRNAs) are short non-coding sequences involved in gene regulation in many biological processes and diseases. The lack of a complete comprehension of their biological functionality, especially in a genome-wide scenario, has demanded new computational approaches to annotate the...
Autores principales: | Noviello, Teresa Maria Rosaria, Ceccarelli, Francesco, Ceccarelli, Michele, Cerulo, Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682815/ https://www.ncbi.nlm.nih.gov/pubmed/33175836 http://dx.doi.org/10.1371/journal.pcbi.1008415 |
Ejemplares similares
-
Learning gene regulatory networks from only positive and unlabeled data
por: Cerulo, Luigi, et al.
Publicado: (2010) -
Detection of long non–coding RNA homology, a comparative study on alignment and alignment–free metrics
por: Noviello, Teresa M. R., et al.
Publicado: (2018) -
Identification of long non-coding transcripts with feature selection: a comparative study
por: Ventola, Giovanna M. M., et al.
Publicado: (2017) -
A negative selection heuristic to predict new transcriptional targets
por: Cerulo, Luigi, et al.
Publicado: (2013) -
Prediction and pan-cancer analysis of mammalian transcripts involved in target directed miRNA degradation
por: Simeone, Ines, et al.
Publicado: (2022)