Cargando…
Sea Clutter Suppression Method of HFSWR Based on RBF Neural Network Model Optimized by Improved GWO Algorithm
The detection performance of high-frequency surface-wave radar (HFSWR) is closely related to the suppression effect of sea clutter. To effectively suppress sea clutter, a sea clutter suppression method based on radial basis function neural network (RBFNN) optimized by improved gray wolf optimization...
Autores principales: | Shang, Shang, He, Kang-Ning, Wang, Zhao-Bin, Yang, Tong, Liu, Ming, Li, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683142/ https://www.ncbi.nlm.nih.gov/pubmed/33273902 http://dx.doi.org/10.1155/2020/8842390 |
Ejemplares similares
-
A New Optimized GA-RBF Neural Network Algorithm
por: Jia, Weikuan, et al.
Publicado: (2014) -
Improved GWO and its application in parameter optimization of Elman neural network
por: Liu, Wei, et al.
Publicado: (2023) -
An Improved Method using RBF Neural Networks to Speed up Optimization Algorithms
por: Aleksa, Martin, et al.
Publicado: (2001) -
A Performance Evaluation Scheme for Multiple Object Tracking with HFSWR
por: Wang, Kun, et al.
Publicado: (2019) -
Path Planning for Unmanned Delivery Robots Based on EWB-GWO Algorithm
por: Luo, Yuan, et al.
Publicado: (2023)