Cargando…

Autonomic balance determines the severity of COVID-19 courses

COVID-19 has left mankind desperately seeking how to manage dramatically rising infection rates associated with severe disease progressions. COVID-19 courses range from mild symptoms up to multiple organ failure and death, triggered by excessively high serum cytokine levels (IL 1β, IL 6, TNF α, IL 8...

Descripción completa

Detalles Bibliográficos
Autores principales: Leitzke, M., Stefanovic, D., Meyer, J.-J., Schimpf, S., Schönknecht, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683278/
https://www.ncbi.nlm.nih.gov/pubmed/33292846
http://dx.doi.org/10.1186/s42234-020-00058-0
Descripción
Sumario:COVID-19 has left mankind desperately seeking how to manage dramatically rising infection rates associated with severe disease progressions. COVID-19 courses range from mild symptoms up to multiple organ failure and death, triggered by excessively high serum cytokine levels (IL 1β, IL 6, TNF α, IL 8). The vagally driven cholinergic anti-inflammatory pathway (CAP) stops the action of nuclear factor κB (NF-κB), the transcriptional factor of pro-inflammatory cytokines. Thus, well-balanced cytokine release depends on adequate vagal signaling. Coronaviruses replicate using NF-κB transcriptional factor as well. By degrading the cytoplasmatic inhibitor of NF-κB subunits (IκB), coronaviruses induce unrestricted NF-κB expression accelerating both, virus replication and cytokine transcription. We hypothesize that CAP detriment due to depressed vagal tone critically determines the severity of COVID-19.