Cargando…
Analysis of deep learning neural network combined with experiments to develop predictive models for a propane vertical jet fire
Fires are important responsible factors to cause catastrophic events in the process industries, whose consequences usually initiate domino effects. The artificial neural network has been shown to be one of the rapid methods to simulate processes in the risk analysis field. In the present work, exper...
Autores principales: | Mashhadimoslem, Hossein, Ghaemi, Ahad, Palacios, Adriana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683313/ https://www.ncbi.nlm.nih.gov/pubmed/33294665 http://dx.doi.org/10.1016/j.heliyon.2020.e05511 |
Ejemplares similares
-
Corrigendum to “Analysis of deep learning neural network combined with experiments to develop predictive models for a propane vertical jet fire” [Heliyon 6 (11) (November 2020) Article e05511]
por: Mashhadimoslem, Hossein, et al.
Publicado: (2020) -
A comparative study of radiation models on propane jet fires based on experimental and computational studies
por: Mashhadimoslem, Hossein, et al.
Publicado: (2021) -
Modeling and optimization of CO(2) mass transfer flux into Pz-KOH-CO(2) system using RSM and ANN
por: Pashaei, Hassan, et al.
Publicado: (2023) -
Adsorption Equilibrium, Thermodynamic, and Kinetic
Study of O(2)/N(2)/CO(2) on Functionalized
Granular Activated Carbon
por: Mashhadimoslem, Hossein, et al.
Publicado: (2022) -
Biomass derived hierarchical porous carbon for high-performance O(2)/N(2) adsorption; a new green self-activation approach
por: Mashhadimoslem, Hossein, et al.
Publicado: (2021)