Cargando…

Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant

Late wilt disease, caused by Cephalosporium maydis in maize plant, is one of the main economical diseases in Egypt. Therefore, to cope with this problem, we investigated the potentiality of plant growth promoting rhizobacteria in controlling this disease. Six strains (Bacillus subtilis, B. circulanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghazy, Nasr, El-Nahrawy, Sahar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683328/
https://www.ncbi.nlm.nih.gov/pubmed/33231747
http://dx.doi.org/10.1007/s00203-020-02113-5
Descripción
Sumario:Late wilt disease, caused by Cephalosporium maydis in maize plant, is one of the main economical diseases in Egypt. Therefore, to cope with this problem, we investigated the potentiality of plant growth promoting rhizobacteria in controlling this disease. Six strains (Bacillus subtilis, B. circulance, B. coagulanse, B. licheniformis, Pseudomonas fluroscence and P. koreensis) were screened for siderophore production, and using dual plate culture method and greenhouse experiment, antagonistic activity against C. maydis was studied. Using two superior strains, single and dual inoculation treatments in maize were applied in field experiment during the 2018 and 2019 seasons. Results indicated that B. subtilis and P. koreensis strains had shown the most qualitative and quantitative assays for siderophore production and antagonistic activities. In greenhouse, the most effective treatments on the pre- and post-emergence damping off as well as growth promotion of maize were T3 treatment (inoculated with B. subtilis), and T8 treatment (inoculated with P. koreensis). In field experiment, T5 treatment (inoculated with a mixture of B. subtilis and P. koreensis) showed significant increases in catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO) activities, as well as total chlorophyll and carotenoids than control treatments during the two growing seasons. In the same way, the highest effect in reducing infection and increasing the thickness of the sclerenchymatous sheath layer surrounding the vascular bundles in maize stem was observed and these results were a reflection of the increase in yield and yield parameters. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00203-020-02113-5) contains supplementary material, which is available to authorized users.