Cargando…
Semi-Supervised Learning in Medical Images Through Graph-Embedded Random Forest
One major challenge in medical imaging analysis is the lack of label and annotation which usually requires medical knowledge and training. This issue is particularly serious in the brain image analysis such as the analysis of retinal vasculature, which directly reflects the vascular condition of Cen...
Autores principales: | Gu, Lin, Zhang, Xiaowei, You, Shaodi, Zhao, Shen, Liu, Zhenzhong, Harada, Tatsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683389/ https://www.ncbi.nlm.nih.gov/pubmed/33240071 http://dx.doi.org/10.3389/fninf.2020.601829 |
Ejemplares similares
-
SeBioGraph: Semi-supervised Deep Learning for the Graph via Sustainable Knowledge Transfer
por: Ma, Yugang, et al.
Publicado: (2021) -
Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
por: Wang, Senhong, et al.
Publicado: (2021) -
Person re-identification via semi-supervised adaptive graph embedding
por: Liu, Jiao, et al.
Publicado: (2022) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023)