Cargando…
Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures
We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683506/ https://www.ncbi.nlm.nih.gov/pubmed/33268907 http://dx.doi.org/10.1007/s10955-020-02663-4 |
Sumario: | We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary [Formula: see text] -convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels. |
---|