Cargando…
Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment
We propose a random forest classifier for identifying adequacy of liver MR images using handcrafted (HC) features and deep convolutional neural networks (CNNs), and analyze the relative role of these two components in relation to the training sample size. The HC features, specifically developed for...
Autores principales: | Lin, Wenyi, Hasenstab, Kyle, Moura Cunha, Guilherme, Schwartzman, Armin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683555/ https://www.ncbi.nlm.nih.gov/pubmed/33230152 http://dx.doi.org/10.1038/s41598-020-77264-y |
Ejemplares similares
-
Fully automated convolutional neural network-based affine algorithm improves liver registration and lesion co-localization on hepatobiliary phase T1-weighted MR images
por: Hasenstab, Kyle A., et al.
Publicado: (2019) -
Brain Tumor Segmentation from MRI Images Using Handcrafted Convolutional Neural Network
por: Ullah, Faizan, et al.
Publicado: (2023) -
Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features
por: Côté-Allard, Ulysse, et al.
Publicado: (2020) -
Real-Time Automated Solubility Screening Method Using Deep Neural Networks with Handcrafted Features
por: Jeon, Minwoo, et al.
Publicado: (2023) -
Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition
por: Bento, Nuno, et al.
Publicado: (2022)