Cargando…
A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction
Data collected from clinical trials and cohort studies, such as dementia studies, are often high-dimensional, censored, heterogeneous and contain missing information, presenting challenges to traditional statistical analysis. There is an urgent need for methods that can overcome these challenges to...
Autores principales: | Spooner, Annette, Chen, Emily, Sowmya, Arcot, Sachdev, Perminder, Kochan, Nicole A., Trollor, Julian, Brodaty, Henry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683682/ https://www.ncbi.nlm.nih.gov/pubmed/33230128 http://dx.doi.org/10.1038/s41598-020-77220-w |
Ejemplares similares
-
Ensemble feature selection with data-driven thresholding for Alzheimer's disease biomarker discovery
por: Spooner, Annette, et al.
Publicado: (2023) -
Microstructural White Matter Changes, Not Hippocampal Atrophy, Detect Early Amnestic Mild Cognitive Impairment
por: Zhuang, Lin, et al.
Publicado: (2013) -
SAT-LB115 Metformin-Use Is Associated With Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults With Type 2 Diabetes Mellitus: The Sydney Memory and Ageing Study
por: Samaras, Katherine, et al.
Publicado: (2020) -
Upregulation of Glycolytic Enzymes, Mitochondrial Dysfunction and Increased Cytotoxicity in Glial Cells Treated with Alzheimer’s Disease Plasma
por: Jayasena, Tharusha, et al.
Publicado: (2015) -
Participant and informant memory-specific cognitive complaints predict future decline and incident dementia: Findings from the Sydney Memory and Ageing Study
por: Numbers, Katya, et al.
Publicado: (2020)