Cargando…
FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
Identification of driver genes, whose mutations cause the development of tumors, is crucial for the improvement of cancer research and precision medicine. To overcome the problem that the traditional frequency-based methods cannot detect lowly recurrently mutated driver genes, researchers have focus...
Autores principales: | Gu, Hong, Xu, Xiaolu, Qin, Pan, Wang, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683798/ https://www.ncbi.nlm.nih.gov/pubmed/33244318 http://dx.doi.org/10.3389/fgene.2020.564839 |
Ejemplares similares
-
Corrigendum: FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2021) -
deepDriver: Predicting Cancer Driver Genes Based on Somatic Mutations Using Deep Convolutional Neural Networks
por: Luo, Ping, et al.
Publicado: (2019) -
DriverSubNet: A Novel Algorithm for Identifying Cancer Driver Genes by Subnetwork Enrichment Analysis
por: Zhang, Di, et al.
Publicado: (2021) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
NetGenes: A Database of Essential Genes Predicted Using Features From Interaction Networks
por: Senthamizhan, Vimaladhasan, et al.
Publicado: (2021)