Cargando…

In vitro activities of Acacia nilotica (L.) Delile bark fractions against Oral Bacteria, Glucosyltransferase and as antioxidant

BACKGROUND: Dental caries and periodontal disease are the most common chronic infectious oral diseases in the world. Acacia nilotica was commonly known in Sudan as Garad or Sunt has a wide range of medicinal uses. In the present study, antibacterial activity of oral bacteria (Streptococcus sobrinus...

Descripción completa

Detalles Bibliográficos
Autores principales: Muddathir, Ali Mahmoud, Mohieldin, Ebtihal Abdalla M., Mitsunaga, Tohru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684731/
https://www.ncbi.nlm.nih.gov/pubmed/33228641
http://dx.doi.org/10.1186/s12906-020-03147-4
Descripción
Sumario:BACKGROUND: Dental caries and periodontal disease are the most common chronic infectious oral diseases in the world. Acacia nilotica was commonly known in Sudan as Garad or Sunt has a wide range of medicinal uses. In the present study, antibacterial activity of oral bacteria (Streptococcus sobrinus and Porphyromonas gingivalis), inhibitory activity against glucosyltransferase (GTF) enzyme and antioxidant activity were assayed for methanolic crude extract of A. nilotica bark and its fractions. METHODS: Methanoilc crude extract of A. nilotica bark was applied to a Sephadex LH-20 column and eluted with methanol, aqueous methanol, and finally aqueous acetone to obtain four fractions (Fr1- Fr4). Furthermore, the crude extract and fractions were subjected to analytical high performance liquid chromatography (HPLC). The crude extract and its fractions were assayed for antibacterial activity against S. sobrinus and P. gingivalis using a microplate dilution assay method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), as well as GTF inhibition and antioxidant activity using ABTS radical scavenging method. RESULTS: Fractions (Fr1 and Fr2) exhibited MIC values of 0.3 mg/ml against the P. gingivalis. Additionally, Fr2 displayed MBC value of 1 mg/ml against two types of bacteria. Fr4 showed an especially potent GTF inhibitory activity with IC(50) value of 3.9 μg/ml. Fr1 displayed the best antioxidant activity with IC(50) value of 1.8 μg/ml. The main compound in Fr1 was identified as gallic acid, and Fr2 was mostly a mixture of gallic acid and methyl gallate. CONCLUSIONS: The results obtained in this study provide some scientific rationale and justify the use of this plant for the treatment of dental diseases in traditional medicine. A. nilotica bark, besides their antibacterial potentiality and GTF inhibitory activity, it may be used as adjuvant antioxidants in mouthwashes. Further studies in the future are required to identify the rest of the active compounds.