Cargando…

Comparison of methylation capture sequencing and Infinium MethylationEPIC array in peripheral blood mononuclear cells

BACKGROUND: Epigenome-wide association studies (EWAS) have been widely applied to identify methylation CpG sites associated with human disease. To date, the Infinium MethylationEPIC array (EPIC) is commonly used for high-throughput DNA methylation profiling. However, the EPIC array covers only 30% o...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Chang, Zhang, Xinyu, Aouizerat, Bradley E., Xu, Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684759/
https://www.ncbi.nlm.nih.gov/pubmed/33228774
http://dx.doi.org/10.1186/s13072-020-00372-6
Descripción
Sumario:BACKGROUND: Epigenome-wide association studies (EWAS) have been widely applied to identify methylation CpG sites associated with human disease. To date, the Infinium MethylationEPIC array (EPIC) is commonly used for high-throughput DNA methylation profiling. However, the EPIC array covers only 30% of the human methylome. Methylation Capture bisulfite sequencing (MC-seq) captures target regions of methylome and has advantages of extensive coverage in the methylome at an affordable price. METHODS: Epigenome-wide DNA methylation in four peripheral blood mononuclear cell samples was profiled by using SureSelectXT Methyl-Seq for MC-seq and EPIC platforms separately. CpG site-based reproducibility of MC-seq was assessed with DNA sample inputs ranging in quantity of high (> 1000 ng), medium (300–1000 ng), and low (150 ng–300 ng). To compare the performance of MC-seq and the EPIC arrays, we conducted a Pearson correlation and methylation value difference at each CpG site that was detected by both MC-seq and EPIC. We compared the percentage and counts in each CpG island and gene annotation between MC-seq and the EPIC array. RESULTS: After quality control, an average of 3,708,550 CpG sites per sample were detected by MC-seq with DNA quantity > 1000 ng. Reproducibility of DNA methylation in MC-seq-detected CpG sites was high among samples with high, medium, and low DNA inputs (r > 0.96). The EPIC array captured an average of 846,464 CpG sites per sample. Compared with the EPIC array, MC-seq detected more CpGs in coding regions and CpG islands. Among the 472,540 CpG sites captured by both platforms, methylation of a majority of CpG sites was highly correlated in the same sample (r: 0.98–0.99). However, methylation for a small proportion of CpGs (N = 235) differed significantly between the two platforms, with differences in beta values of greater than 0.5. CONCLUSIONS: Our results show that MC-seq is an efficient and reliable platform for methylome profiling with a broader coverage of the methylome than the array-based platform. Although methylation measurements in majority of CpGs are highly correlated, a number of CpG sites show large discrepancy between the two platforms, which warrants further investigation and needs cautious interpretation.