Cargando…
miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses
The present study aimed to investigate whether microRNA (miR)-31 exerted therapeutic potential in allergic rhinitis (AR) and to explore its underlying mechanism. Firstly, the expression levels of miR-31 were detected by reverse transcription-quantitative PCR in the nasal mucosa of patients and mice....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684864/ https://www.ncbi.nlm.nih.gov/pubmed/33179116 http://dx.doi.org/10.3892/mmr.2020.11680 |
_version_ | 1783613082632716288 |
---|---|
author | Zhou, Fangwei Liu, Peiqiang Lv, Hao Gao, Ziang Chang, Wenchuan Xu, Yu |
author_facet | Zhou, Fangwei Liu, Peiqiang Lv, Hao Gao, Ziang Chang, Wenchuan Xu, Yu |
author_sort | Zhou, Fangwei |
collection | PubMed |
description | The present study aimed to investigate whether microRNA (miR)-31 exerted therapeutic potential in allergic rhinitis (AR) and to explore its underlying mechanism. Firstly, the expression levels of miR-31 were detected by reverse transcription-quantitative PCR in the nasal mucosa of patients and mice. Subsequently, an ovalbumin (OVA)-induced animal model of AR was constructed. Allergic symptom score, histopathological characteristics, OVA-specific immunoglobulin E (IgE) titers, and T-helper (Th)1 and Th2 cell-related cytokine levels were analyzed in OVA-sensitized mice, miR-31-overexpressing mice, miR-negative control mice and control mice. Furthermore, interleukin (IL)-13-stimulated nasal epithelial cells (NECs) were used to assess the effects of miR-31 on the production of IL-13-induced inflammatory cytokines and mucin 5AC by performing western blotting and ELISA. The expression levels of miR-31 were significantly decreased in the nasal mucosa of the AR group compared with those in the control group. Moreover, upregulation of miR-31 markedly attenuated sneezing and nasal rubbing events, reduced nasal eosinophil infiltration and goblet cell hyperplasia, and decreased the levels of OVA-specific IgE and Th2-related cytokines. In addition, subsequent in vitro experiments showed that upregulation of miR-31 inhibited IL-13 receptor α1 chain expression and signal transducer and activator of transcription 6 phosphorylation in NECs. Furthermore, miR-31 suppressed IL-13-induced expression of thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, eotaxin and mucin 5AC in NECs. In conclusion, these data revealed that miR-31 could ameliorate AR by suppressing IL-13-induced nasal epithelial inflammatory responses, and thus may serve as a novel therapeutic target for AR. |
format | Online Article Text |
id | pubmed-7684864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-76848642020-11-25 miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses Zhou, Fangwei Liu, Peiqiang Lv, Hao Gao, Ziang Chang, Wenchuan Xu, Yu Mol Med Rep Articles The present study aimed to investigate whether microRNA (miR)-31 exerted therapeutic potential in allergic rhinitis (AR) and to explore its underlying mechanism. Firstly, the expression levels of miR-31 were detected by reverse transcription-quantitative PCR in the nasal mucosa of patients and mice. Subsequently, an ovalbumin (OVA)-induced animal model of AR was constructed. Allergic symptom score, histopathological characteristics, OVA-specific immunoglobulin E (IgE) titers, and T-helper (Th)1 and Th2 cell-related cytokine levels were analyzed in OVA-sensitized mice, miR-31-overexpressing mice, miR-negative control mice and control mice. Furthermore, interleukin (IL)-13-stimulated nasal epithelial cells (NECs) were used to assess the effects of miR-31 on the production of IL-13-induced inflammatory cytokines and mucin 5AC by performing western blotting and ELISA. The expression levels of miR-31 were significantly decreased in the nasal mucosa of the AR group compared with those in the control group. Moreover, upregulation of miR-31 markedly attenuated sneezing and nasal rubbing events, reduced nasal eosinophil infiltration and goblet cell hyperplasia, and decreased the levels of OVA-specific IgE and Th2-related cytokines. In addition, subsequent in vitro experiments showed that upregulation of miR-31 inhibited IL-13 receptor α1 chain expression and signal transducer and activator of transcription 6 phosphorylation in NECs. Furthermore, miR-31 suppressed IL-13-induced expression of thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, eotaxin and mucin 5AC in NECs. In conclusion, these data revealed that miR-31 could ameliorate AR by suppressing IL-13-induced nasal epithelial inflammatory responses, and thus may serve as a novel therapeutic target for AR. D.A. Spandidos 2021-01 2020-11-10 /pmc/articles/PMC7684864/ /pubmed/33179116 http://dx.doi.org/10.3892/mmr.2020.11680 Text en Copyright: © Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhou, Fangwei Liu, Peiqiang Lv, Hao Gao, Ziang Chang, Wenchuan Xu, Yu miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
title | miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
title_full | miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
title_fullStr | miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
title_full_unstemmed | miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
title_short | miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
title_sort | mir-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684864/ https://www.ncbi.nlm.nih.gov/pubmed/33179116 http://dx.doi.org/10.3892/mmr.2020.11680 |
work_keys_str_mv | AT zhoufangwei mir31attenuatesmurineallergicrhinitisbysuppressinginterleukin13inducednasalepithelialinflammatoryresponses AT liupeiqiang mir31attenuatesmurineallergicrhinitisbysuppressinginterleukin13inducednasalepithelialinflammatoryresponses AT lvhao mir31attenuatesmurineallergicrhinitisbysuppressinginterleukin13inducednasalepithelialinflammatoryresponses AT gaoziang mir31attenuatesmurineallergicrhinitisbysuppressinginterleukin13inducednasalepithelialinflammatoryresponses AT changwenchuan mir31attenuatesmurineallergicrhinitisbysuppressinginterleukin13inducednasalepithelialinflammatoryresponses AT xuyu mir31attenuatesmurineallergicrhinitisbysuppressinginterleukin13inducednasalepithelialinflammatoryresponses |