Cargando…
Acoustic Energy Release During the Laboratory Seismic Cycle: Insights on Laboratory Earthquake Precursors and Prediction
Machine learning can predict the timing and magnitude of laboratory earthquakes using statistics of acoustic emissions. The evolution of acoustic energy is critical for lab earthquake prediction; however, the connections between acoustic energy and fault zone processes leading to failure are poorly...
Autores principales: | Bolton, David C., Shreedharan, Srisharan, Rivière, Jacques, Marone, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685124/ https://www.ncbi.nlm.nih.gov/pubmed/33282618 http://dx.doi.org/10.1029/2019JB018975 |
Ejemplares similares
-
Machine Learning Predicts the Timing and Shear Stress Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes
por: Shreedharan, Srisharan, et al.
Publicado: (2021) -
The High‐Frequency Signature of Slow and Fast Laboratory Earthquakes
por: Bolton, David C., et al.
Publicado: (2022) -
Frequency‐Magnitude Statistics of Laboratory Foreshocks Vary With Shear Velocity, Fault Slip Rate, and Shear Stress
por: Bolton, David C., et al.
Publicado: (2021) -
Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering
por: Cebry, Sara Beth L., et al.
Publicado: (2022) -
Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes
por: Ghaffari, H. O., et al.
Publicado: (2013)