Cargando…
Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study
BACKGROUND: Periodontal regeneration involves using a variety of bone graft substitutes (BGS) of varying origin and manufacturing processes. These include a wide range of biomaterials that are mainly of two types: the xenografts and alloplasts. The efficacy of these BGS depends upon the physical cha...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685282/ https://www.ncbi.nlm.nih.gov/pubmed/33282774 http://dx.doi.org/10.4103/jispcd.JISPCD_263_20 |
_version_ | 1783613156316151808 |
---|---|
author | Anil, Aiswarya Sadasivan, Arun Koshi, Elizabeth |
author_facet | Anil, Aiswarya Sadasivan, Arun Koshi, Elizabeth |
author_sort | Anil, Aiswarya |
collection | PubMed |
description | BACKGROUND: Periodontal regeneration involves using a variety of bone graft substitutes (BGS) of varying origin and manufacturing processes. These include a wide range of biomaterials that are mainly of two types: the xenografts and alloplasts. The efficacy of these BGS depends upon the physical characteristics such as particle size, porous nature, surface morphology, as well as the chemical characteristics like composition, crystallinity and resorption properties. AIMS: The present study is a descriptive study that focuses on describing the physicochemical characteristics of five selected commercially available BGS that are frequently used in periodontal regeneration procedures. The BGS studied here included two xenografts (colocast and osseograft) and three alloplasts (B-OstIN, biograft HABG active and biograft HT). MATERIALS AND METHODS: The physical properties of the BGS, including particle size, morphology, and surface topography, were analyzed using SEM. The mineral phases and crystallinity of the BGS were analyzed using XRD. RESULTS: The results showed that the xenografts (colocast and osseograft) had minimal mineral composition and crystalline structure. The physical properties such as surface roughness and porosity were less compared to alloplastic materials. The alloplasts (B-OstIN, biograft HABG and biograft HT) that had different chemical compositions showed varying physical and crystalline properties. Biograft HT showed a superior porous scaffold architecture among all BGS studied. CONCLUSION: It is important for a clinician to have a thorough understanding about the physicochemical characteristics of BGS they use in periodontal regeneration. The xenografts evaluated here had minimal physical and crystalline properties. Among the alloplasts studied, biograft HT showed superior physicochemical properties, while the presence of bioactive glass in biograft HABG enhanced regeneration. |
format | Online Article Text |
id | pubmed-7685282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-76852822020-12-03 Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study Anil, Aiswarya Sadasivan, Arun Koshi, Elizabeth J Int Soc Prev Community Dent Original Article BACKGROUND: Periodontal regeneration involves using a variety of bone graft substitutes (BGS) of varying origin and manufacturing processes. These include a wide range of biomaterials that are mainly of two types: the xenografts and alloplasts. The efficacy of these BGS depends upon the physical characteristics such as particle size, porous nature, surface morphology, as well as the chemical characteristics like composition, crystallinity and resorption properties. AIMS: The present study is a descriptive study that focuses on describing the physicochemical characteristics of five selected commercially available BGS that are frequently used in periodontal regeneration procedures. The BGS studied here included two xenografts (colocast and osseograft) and three alloplasts (B-OstIN, biograft HABG active and biograft HT). MATERIALS AND METHODS: The physical properties of the BGS, including particle size, morphology, and surface topography, were analyzed using SEM. The mineral phases and crystallinity of the BGS were analyzed using XRD. RESULTS: The results showed that the xenografts (colocast and osseograft) had minimal mineral composition and crystalline structure. The physical properties such as surface roughness and porosity were less compared to alloplastic materials. The alloplasts (B-OstIN, biograft HABG and biograft HT) that had different chemical compositions showed varying physical and crystalline properties. Biograft HT showed a superior porous scaffold architecture among all BGS studied. CONCLUSION: It is important for a clinician to have a thorough understanding about the physicochemical characteristics of BGS they use in periodontal regeneration. The xenografts evaluated here had minimal physical and crystalline properties. Among the alloplasts studied, biograft HT showed superior physicochemical properties, while the presence of bioactive glass in biograft HABG enhanced regeneration. Wolters Kluwer - Medknow 2020-09-28 /pmc/articles/PMC7685282/ /pubmed/33282774 http://dx.doi.org/10.4103/jispcd.JISPCD_263_20 Text en Copyright: © 2020 Journal of International Society of Preventive and Community Dentistry http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Anil, Aiswarya Sadasivan, Arun Koshi, Elizabeth Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study |
title | Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study |
title_full | Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study |
title_fullStr | Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study |
title_full_unstemmed | Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study |
title_short | Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study |
title_sort | physicochemical characterization of five different bone graft substitutes used in periodontal regeneration: an in vitro study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685282/ https://www.ncbi.nlm.nih.gov/pubmed/33282774 http://dx.doi.org/10.4103/jispcd.JISPCD_263_20 |
work_keys_str_mv | AT anilaiswarya physicochemicalcharacterizationoffivedifferentbonegraftsubstitutesusedinperiodontalregenerationaninvitrostudy AT sadasivanarun physicochemicalcharacterizationoffivedifferentbonegraftsubstitutesusedinperiodontalregenerationaninvitrostudy AT koshielizabeth physicochemicalcharacterizationoffivedifferentbonegraftsubstitutesusedinperiodontalregenerationaninvitrostudy |