Cargando…
Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment
Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during,...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685343/ https://www.ncbi.nlm.nih.gov/pubmed/33236030 http://dx.doi.org/10.1101/2020.11.19.20234229 |
_version_ | 1783613165366411264 |
---|---|
author | Marotz, Clarisse Belda-Ferre, Pedro Ali, Farhana Das, Promi Huang, Shi Cantrell, Kalen Jiang, Lingjing Martino, Cameron Diner, Rachel E. Rahman, Gibraan McDonald, Daniel Armstrong, George Kodera, Sho Donato, Sonya Ecklu-Mensah, Gertrude Gottel, Neil Garcia, Mariana C. Salas Chiang, Leslie Y. Salido, Rodolfo A. Shaffer, Justin P. Bryant, MacKenzie Sanders, Karenina Humphrey, Greg Ackermann, Gail Haiminen, Niina Beck, Kristen L. Kim, Ho-Cheol Carrieri, Anna Paola Parida, Laxmi Vázquez-Baeza, Yoshiki Torriani, Francesca J. Knight, Rob Gilbert, Jack A. Sweeney, Daniel A. Allard, Sarah M. |
author_facet | Marotz, Clarisse Belda-Ferre, Pedro Ali, Farhana Das, Promi Huang, Shi Cantrell, Kalen Jiang, Lingjing Martino, Cameron Diner, Rachel E. Rahman, Gibraan McDonald, Daniel Armstrong, George Kodera, Sho Donato, Sonya Ecklu-Mensah, Gertrude Gottel, Neil Garcia, Mariana C. Salas Chiang, Leslie Y. Salido, Rodolfo A. Shaffer, Justin P. Bryant, MacKenzie Sanders, Karenina Humphrey, Greg Ackermann, Gail Haiminen, Niina Beck, Kristen L. Kim, Ho-Cheol Carrieri, Anna Paola Parida, Laxmi Vázquez-Baeza, Yoshiki Torriani, Francesca J. Knight, Rob Gilbert, Jack A. Sweeney, Daniel A. Allard, Sarah M. |
author_sort | Marotz, Clarisse |
collection | PubMed |
description | Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset through meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome over time, SARS-CoV-2 was detected less there (11%). Despite viral surface contamination in almost all patient rooms, no health care workers contracted the disease, suggesting that personal protective equipment was effective in preventing transmissions. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high SARS-CoV-2 classifier accuracy in not only nares, but also forehead, stool, and floor samples. Across distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types and had higher prevalence in positive surface and human samples, even compared to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities may contribute to viral prevalence both in the host and hospital environment. |
format | Online Article Text |
id | pubmed-7685343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-76853432020-11-25 Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment Marotz, Clarisse Belda-Ferre, Pedro Ali, Farhana Das, Promi Huang, Shi Cantrell, Kalen Jiang, Lingjing Martino, Cameron Diner, Rachel E. Rahman, Gibraan McDonald, Daniel Armstrong, George Kodera, Sho Donato, Sonya Ecklu-Mensah, Gertrude Gottel, Neil Garcia, Mariana C. Salas Chiang, Leslie Y. Salido, Rodolfo A. Shaffer, Justin P. Bryant, MacKenzie Sanders, Karenina Humphrey, Greg Ackermann, Gail Haiminen, Niina Beck, Kristen L. Kim, Ho-Cheol Carrieri, Anna Paola Parida, Laxmi Vázquez-Baeza, Yoshiki Torriani, Francesca J. Knight, Rob Gilbert, Jack A. Sweeney, Daniel A. Allard, Sarah M. medRxiv Article Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset through meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome over time, SARS-CoV-2 was detected less there (11%). Despite viral surface contamination in almost all patient rooms, no health care workers contracted the disease, suggesting that personal protective equipment was effective in preventing transmissions. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high SARS-CoV-2 classifier accuracy in not only nares, but also forehead, stool, and floor samples. Across distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types and had higher prevalence in positive surface and human samples, even compared to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities may contribute to viral prevalence both in the host and hospital environment. Cold Spring Harbor Laboratory 2020-11-22 /pmc/articles/PMC7685343/ /pubmed/33236030 http://dx.doi.org/10.1101/2020.11.19.20234229 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Marotz, Clarisse Belda-Ferre, Pedro Ali, Farhana Das, Promi Huang, Shi Cantrell, Kalen Jiang, Lingjing Martino, Cameron Diner, Rachel E. Rahman, Gibraan McDonald, Daniel Armstrong, George Kodera, Sho Donato, Sonya Ecklu-Mensah, Gertrude Gottel, Neil Garcia, Mariana C. Salas Chiang, Leslie Y. Salido, Rodolfo A. Shaffer, Justin P. Bryant, MacKenzie Sanders, Karenina Humphrey, Greg Ackermann, Gail Haiminen, Niina Beck, Kristen L. Kim, Ho-Cheol Carrieri, Anna Paola Parida, Laxmi Vázquez-Baeza, Yoshiki Torriani, Francesca J. Knight, Rob Gilbert, Jack A. Sweeney, Daniel A. Allard, Sarah M. Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment |
title | Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment |
title_full | Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment |
title_fullStr | Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment |
title_full_unstemmed | Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment |
title_short | Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment |
title_sort | microbial context predicts sars-cov-2 prevalence in patients and the hospital built environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685343/ https://www.ncbi.nlm.nih.gov/pubmed/33236030 http://dx.doi.org/10.1101/2020.11.19.20234229 |
work_keys_str_mv | AT marotzclarisse microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT beldaferrepedro microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT alifarhana microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT daspromi microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT huangshi microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT cantrellkalen microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT jianglingjing microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT martinocameron microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT dinerrachele microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT rahmangibraan microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT mcdonalddaniel microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT armstronggeorge microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT koderasho microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT donatosonya microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT ecklumensahgertrude microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT gottelneil microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT garciamarianacsalas microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT chianglesliey microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT salidorodolfoa microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT shafferjustinp microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT bryantmackenzie microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT sanderskarenina microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT humphreygreg microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT ackermanngail microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT haiminenniina microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT beckkristenl microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT kimhocheol microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT carrieriannapaola microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT paridalaxmi microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT vazquezbaezayoshiki microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT torrianifrancescaj microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT knightrob microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT gilbertjacka microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT sweeneydaniela microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment AT allardsarahm microbialcontextpredictssarscov2prevalenceinpatientsandthehospitalbuiltenvironment |