Cargando…
Deep-learning algorithms for the interpretation of chest radiographs to aid in the triage of COVID-19 patients: A multicenter retrospective study
The recent medical applications of deep-learning (DL) algorithms have demonstrated their clinical efficacy in improving speed and accuracy of image interpretation. If the DL algorithm achieves a performance equivalent to that achieved by physicians in chest radiography (CR) diagnoses with Coronaviru...
Autores principales: | Jang, Se Bum, Lee, Suk Hee, Lee, Dong Eun, Park, Sin-Youl, Kim, Jong Kun, Cho, Jae Wan, Cho, Jaekyung, Kim, Ki Beom, Park, Byunggeon, Park, Jongmin, Lim, Jae-Kwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685476/ https://www.ncbi.nlm.nih.gov/pubmed/33232368 http://dx.doi.org/10.1371/journal.pone.0242759 |
Ejemplares similares
-
Extension of Coronavirus Disease 2019 on Chest CT and Implications for Chest Radiographic Interpretation
por: Choi, Hyewon, et al.
Publicado: (2020) -
Quantitative Measurement Method for Possible Rib Fractures in Chest Radiographs
por: Kim, Jaeil, et al.
Publicado: (2013) -
Erratum: Extension of Coronavirus Disease 2019 (COVID-19) on Chest CT and Implications for Chest Radiograph Interpretation
por: Choi, Hyewon, et al.
Publicado: (2020) -
Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers' Performance
por: Lee, Kyung Hee, et al.
Publicado: (2012) -
Association of Artificial Intelligence–Aided Chest Radiograph Interpretation With Reader Performance and Efficiency
por: Ahn, Jong Seok, et al.
Publicado: (2022)