Cargando…
A random forest based biomarker discovery and power analysis framework for diagnostics research
BACKGROUND: Biomarker identification is one of the major and important goal of functional genomics and translational medicine studies. Large scale –omics data are increasingly being accumulated and can provide vital means for the identification of biomarkers for the early diagnosis of complex diseas...
Autores principales: | Acharjee, Animesh, Larkman, Joseph, Xu, Yuanwei, Cardoso, Victor Roth, Gkoutos, Georgios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685541/ https://www.ncbi.nlm.nih.gov/pubmed/33228632 http://dx.doi.org/10.1186/s12920-020-00826-6 |
Ejemplares similares
-
CACONET: a novel classification framework for microbial correlation networks
por: Xu, Yuanwei, et al.
Publicado: (2022) -
Biomarker Prioritisation and Power Estimation Using Ensemble Gene Regulatory Network Inference
por: Aziz, Furqan, et al.
Publicado: (2020) -
Machine Learning-Based Identification of Potentially Novel Non-Alcoholic Fatty Liver Disease Biomarkers
por: Shafiha, Roshan, et al.
Publicado: (2021) -
-Omics biomarker identification pipeline for translational medicine
por: Bravo-Merodio, Laura, et al.
Publicado: (2019) -
Machine Learning-Based Identification of Colon Cancer Candidate Diagnostics Genes
por: Koppad, Saraswati, et al.
Publicado: (2022)