Cargando…
Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice
BACKGROUND: Recent evidence by our laboratory demonstrates that women and female mice endogenously express higher endothelial mineralocorticoid receptor (ECMR) than males. Mounting clinical evidence also indicates that aldosterone production is higher in pathological conditions in females compared t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685592/ https://www.ncbi.nlm.nih.gov/pubmed/33228767 http://dx.doi.org/10.1186/s13293-020-00340-5 |
_version_ | 1783613206225223680 |
---|---|
author | Faulkner, Jessica L. Lluch, Emily Kennard, Simone Antonova, Galina Jaffe, Iris Z. Belin de Chantemèle, Eric J. |
author_facet | Faulkner, Jessica L. Lluch, Emily Kennard, Simone Antonova, Galina Jaffe, Iris Z. Belin de Chantemèle, Eric J. |
author_sort | Faulkner, Jessica L. |
collection | PubMed |
description | BACKGROUND: Recent evidence by our laboratory demonstrates that women and female mice endogenously express higher endothelial mineralocorticoid receptor (ECMR) than males. Mounting clinical evidence also indicates that aldosterone production is higher in pathological conditions in females compared to males. However, the role for increased activation of ECMR by aldosterone in the absence of a comorbid condition is yet to be explored. The current study hypothesized that increased ECMR activation induced by elevated aldosterone production predisposes healthy female mice to endothelial dysfunction. METHOD: Vascular reactivity was assessed in aortic rings from wild-type (WT) and ECMR KO (KO) mice fed either a normal salt (NSD, 0.4% NaCl) or sodium-restricted diet (SRD, 0.05% NaCl) for 28 days. RESULTS: SRD elevated plasma aldosterone levels as well as adrenal CYP11B2 and angiotensin II type 1 receptor (AT1R) expressions in female, but not male, WT mice. In baseline conditions (NSD), endothelial function, assessed by vascular relaxation to acetylcholine, was higher while vascular contractility to phenylephrine, serotonin, and KCl lower in female than male WT mice. SRD impaired endothelial function and increased vascular contractility in female, but not male, WT mice effectively ablating the baseline sex differences. NOS inhibition with LNAME ablated endothelial relaxation to a higher extent in male than female mice on NSD and ablated differences in acetylcholine relaxation responses between NSD- and SRD-fed females, indicating a role for NO in SRD-mediated endothelial function. In association, SRD significantly reduced vascular NOX4 expression in female, but not male, mice. Lastly, selective deletion of ECMR protected female mice from SRD-mediated endothelial dysfunction and increased vascular contractility. CONCLUSION: Collectively, these data indicate that female mice develop aldosterone-induced endothelial dysfunction via endothelial MR-mediated reductions in NO bioavailability. In addition, these data support a role for ECMR to promote vascular contractility in female mice in response to sodium restriction. |
format | Online Article Text |
id | pubmed-7685592 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-76855922020-11-25 Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice Faulkner, Jessica L. Lluch, Emily Kennard, Simone Antonova, Galina Jaffe, Iris Z. Belin de Chantemèle, Eric J. Biol Sex Differ Research BACKGROUND: Recent evidence by our laboratory demonstrates that women and female mice endogenously express higher endothelial mineralocorticoid receptor (ECMR) than males. Mounting clinical evidence also indicates that aldosterone production is higher in pathological conditions in females compared to males. However, the role for increased activation of ECMR by aldosterone in the absence of a comorbid condition is yet to be explored. The current study hypothesized that increased ECMR activation induced by elevated aldosterone production predisposes healthy female mice to endothelial dysfunction. METHOD: Vascular reactivity was assessed in aortic rings from wild-type (WT) and ECMR KO (KO) mice fed either a normal salt (NSD, 0.4% NaCl) or sodium-restricted diet (SRD, 0.05% NaCl) for 28 days. RESULTS: SRD elevated plasma aldosterone levels as well as adrenal CYP11B2 and angiotensin II type 1 receptor (AT1R) expressions in female, but not male, WT mice. In baseline conditions (NSD), endothelial function, assessed by vascular relaxation to acetylcholine, was higher while vascular contractility to phenylephrine, serotonin, and KCl lower in female than male WT mice. SRD impaired endothelial function and increased vascular contractility in female, but not male, WT mice effectively ablating the baseline sex differences. NOS inhibition with LNAME ablated endothelial relaxation to a higher extent in male than female mice on NSD and ablated differences in acetylcholine relaxation responses between NSD- and SRD-fed females, indicating a role for NO in SRD-mediated endothelial function. In association, SRD significantly reduced vascular NOX4 expression in female, but not male, mice. Lastly, selective deletion of ECMR protected female mice from SRD-mediated endothelial dysfunction and increased vascular contractility. CONCLUSION: Collectively, these data indicate that female mice develop aldosterone-induced endothelial dysfunction via endothelial MR-mediated reductions in NO bioavailability. In addition, these data support a role for ECMR to promote vascular contractility in female mice in response to sodium restriction. BioMed Central 2020-11-23 /pmc/articles/PMC7685592/ /pubmed/33228767 http://dx.doi.org/10.1186/s13293-020-00340-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Faulkner, Jessica L. Lluch, Emily Kennard, Simone Antonova, Galina Jaffe, Iris Z. Belin de Chantemèle, Eric J. Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
title | Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
title_full | Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
title_fullStr | Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
title_full_unstemmed | Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
title_short | Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
title_sort | selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685592/ https://www.ncbi.nlm.nih.gov/pubmed/33228767 http://dx.doi.org/10.1186/s13293-020-00340-5 |
work_keys_str_mv | AT faulknerjessical selectivedeletionofendothelialmineralocorticoidreceptorprotectsfromvasculardysfunctioninsodiumrestrictedfemalemice AT lluchemily selectivedeletionofendothelialmineralocorticoidreceptorprotectsfromvasculardysfunctioninsodiumrestrictedfemalemice AT kennardsimone selectivedeletionofendothelialmineralocorticoidreceptorprotectsfromvasculardysfunctioninsodiumrestrictedfemalemice AT antonovagalina selectivedeletionofendothelialmineralocorticoidreceptorprotectsfromvasculardysfunctioninsodiumrestrictedfemalemice AT jaffeirisz selectivedeletionofendothelialmineralocorticoidreceptorprotectsfromvasculardysfunctioninsodiumrestrictedfemalemice AT belindechantemeleericj selectivedeletionofendothelialmineralocorticoidreceptorprotectsfromvasculardysfunctioninsodiumrestrictedfemalemice |