Cargando…
Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker
Esaxerenone is a novel selective mineralocorticoid receptor (MR) blocker that was recently approved in Japan to treat hypertension. In phase II and III studies, esaxerenone plus a renin–angiotensin system inhibitor markedly reduced the urinary albumin-to-creatinine ratio (UACR) in hypertensive patie...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685977/ https://www.ncbi.nlm.nih.gov/pubmed/32616846 http://dx.doi.org/10.1038/s41440-020-0495-0 |
_version_ | 1783613272905220096 |
---|---|
author | Arai, Kiyoshi Morikawa, Yuka Ubukata, Naoko Sugimoto, Kotaro |
author_facet | Arai, Kiyoshi Morikawa, Yuka Ubukata, Naoko Sugimoto, Kotaro |
author_sort | Arai, Kiyoshi |
collection | PubMed |
description | Esaxerenone is a novel selective mineralocorticoid receptor (MR) blocker that was recently approved in Japan to treat hypertension. In phase II and III studies, esaxerenone plus a renin–angiotensin system inhibitor markedly reduced the urinary albumin-to-creatinine ratio (UACR) in hypertensive patients with diabetic nephropathy. To evaluate a direct renoprotective effect by MR blockade independent of an antihypertensive effect in the context of diabetic nephropathy, esaxerenone (3 mg/kg), olmesartan (an angiotensin II receptor blocker; 1 mg/kg), or both were orally administered to KK-Ay mice, a type 2 diabetes model, once daily for 56 days. Urinary albumin (Ualb), UACR, and markers, such as podocalyxin, monocyte chemoattractant protein-1 (MCP-1), and 8-hydroxy-2′-deoxyguanosine (8-OHdG), were measured, along with systolic blood pressure (SBP), fasting blood glucose, and serum K(+) levels. Prior to the initiation of drug administration, KK-Ay mice showed higher blood glucose, insulin, Ualb excretion, and UACR levels than C57BL/6 J mice, a nondiabetic control, indicating the development of diabetic renal injury. Combined treatment with esaxerenone and olmesartan significantly reduced the change in UACR from baseline compared with the change associated with vehicle at week 8 (−1.750 vs. 0.339 g/gCre; P < 0.002) and significantly inhibited the change in Ualb from baseline compared with the change associated with vehicle at week 8 (P < 0.002). The combination treatment also reduced urinary excretion of podocalyxin and MCP-1, but did not influence 8-OHdG excretion, SBP, blood glucose, or serum K(+) levels. Overall, esaxerenone plus olmesartan treatment ameliorated diabetic nephropathy in KK-Ay mice without affecting SBP, suggesting that the renoprotective effects of esaxerenone could be exerted independently of its antihypertensive effect. |
format | Online Article Text |
id | pubmed-7685977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-76859772020-12-03 Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker Arai, Kiyoshi Morikawa, Yuka Ubukata, Naoko Sugimoto, Kotaro Hypertens Res Article Esaxerenone is a novel selective mineralocorticoid receptor (MR) blocker that was recently approved in Japan to treat hypertension. In phase II and III studies, esaxerenone plus a renin–angiotensin system inhibitor markedly reduced the urinary albumin-to-creatinine ratio (UACR) in hypertensive patients with diabetic nephropathy. To evaluate a direct renoprotective effect by MR blockade independent of an antihypertensive effect in the context of diabetic nephropathy, esaxerenone (3 mg/kg), olmesartan (an angiotensin II receptor blocker; 1 mg/kg), or both were orally administered to KK-Ay mice, a type 2 diabetes model, once daily for 56 days. Urinary albumin (Ualb), UACR, and markers, such as podocalyxin, monocyte chemoattractant protein-1 (MCP-1), and 8-hydroxy-2′-deoxyguanosine (8-OHdG), were measured, along with systolic blood pressure (SBP), fasting blood glucose, and serum K(+) levels. Prior to the initiation of drug administration, KK-Ay mice showed higher blood glucose, insulin, Ualb excretion, and UACR levels than C57BL/6 J mice, a nondiabetic control, indicating the development of diabetic renal injury. Combined treatment with esaxerenone and olmesartan significantly reduced the change in UACR from baseline compared with the change associated with vehicle at week 8 (−1.750 vs. 0.339 g/gCre; P < 0.002) and significantly inhibited the change in Ualb from baseline compared with the change associated with vehicle at week 8 (P < 0.002). The combination treatment also reduced urinary excretion of podocalyxin and MCP-1, but did not influence 8-OHdG excretion, SBP, blood glucose, or serum K(+) levels. Overall, esaxerenone plus olmesartan treatment ameliorated diabetic nephropathy in KK-Ay mice without affecting SBP, suggesting that the renoprotective effects of esaxerenone could be exerted independently of its antihypertensive effect. Springer Singapore 2020-07-02 2020 /pmc/articles/PMC7685977/ /pubmed/32616846 http://dx.doi.org/10.1038/s41440-020-0495-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Arai, Kiyoshi Morikawa, Yuka Ubukata, Naoko Sugimoto, Kotaro Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker |
title | Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker |
title_full | Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker |
title_fullStr | Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker |
title_full_unstemmed | Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker |
title_short | Synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (CS-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin II receptor blocker |
title_sort | synergistic reduction in albuminuria in type 2 diabetic mice by esaxerenone (cs-3150), a novel nonsteroidal selective mineralocorticoid receptor blocker, combined with an angiotensin ii receptor blocker |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685977/ https://www.ncbi.nlm.nih.gov/pubmed/32616846 http://dx.doi.org/10.1038/s41440-020-0495-0 |
work_keys_str_mv | AT araikiyoshi synergisticreductioninalbuminuriaintype2diabeticmicebyesaxerenonecs3150anovelnonsteroidalselectivemineralocorticoidreceptorblockercombinedwithanangiotensiniireceptorblocker AT morikawayuka synergisticreductioninalbuminuriaintype2diabeticmicebyesaxerenonecs3150anovelnonsteroidalselectivemineralocorticoidreceptorblockercombinedwithanangiotensiniireceptorblocker AT ubukatanaoko synergisticreductioninalbuminuriaintype2diabeticmicebyesaxerenonecs3150anovelnonsteroidalselectivemineralocorticoidreceptorblockercombinedwithanangiotensiniireceptorblocker AT sugimotokotaro synergisticreductioninalbuminuriaintype2diabeticmicebyesaxerenonecs3150anovelnonsteroidalselectivemineralocorticoidreceptorblockercombinedwithanangiotensiniireceptorblocker |