Cargando…
On-the-fly closed-loop materials discovery via Bayesian active learning
Active learning—the field of machine learning (ML) dedicated to optimal experiment design—has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on...
Autores principales: | Kusne, A. Gilad, Yu, Heshan, Wu, Changming, Zhang, Huairuo, Hattrick-Simpers, Jason, DeCost, Brian, Sarker, Suchismita, Oses, Corey, Toher, Cormac, Curtarolo, Stefano, Davydov, Albert V., Agarwal, Ritesh, Bendersky, Leonid A., Li, Mo, Mehta, Apurva, Takeuchi, Ichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686338/ https://www.ncbi.nlm.nih.gov/pubmed/33235197 http://dx.doi.org/10.1038/s41467-020-19597-w |
Ejemplares similares
-
Exploiting redundancy in large materials datasets for efficient machine learning with less data
por: Li, Kangming, et al.
Publicado: (2023) -
Universal fragment descriptors for predicting properties of inorganic crystals
por: Isayev, Olexandr, et al.
Publicado: (2017) -
High-entropy high-hardness metal carbides discovered by entropy descriptors
por: Sarker, Pranab, et al.
Publicado: (2018) -
Plasmonic high-entropy carbides
por: Calzolari, Arrigo, et al.
Publicado: (2022) -
Settling the matter of the role of vibrations in the stability of high-entropy carbides
por: Esters, Marco, et al.
Publicado: (2021)