Cargando…
Mapping wind erosion hazard with regression-based machine learning algorithms
Land susceptibility to wind erosion hazard in Isfahan province, Iran, was mapped by testing 16 advanced regression-based machine learning methods: Robust linear regression (RLR), Cforest, Non-convex penalized quantile regression (NCPQR), Neural network with feature extraction (NNFE), Monotone multi-...
Autores principales: | Gholami, Hamid, Mohammadifar, Aliakbar, Bui, Dieu Tien, Collins, Adrian L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686346/ https://www.ncbi.nlm.nih.gov/pubmed/33235269 http://dx.doi.org/10.1038/s41598-020-77567-0 |
Ejemplares similares
-
Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India
por: Saha, Sunil, et al.
Publicado: (2020) -
Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory
por: Mohammadifar, Aliakbar, et al.
Publicado: (2022) -
Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source
por: Gholami, Hamid, et al.
Publicado: (2022) -
Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms
por: Tien Bui, Dieu, et al.
Publicado: (2018) -
Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study
por: Arabameri, Alireza, et al.
Publicado: (2020)