Cargando…
Resistance to noise-induced gap detection impairment in FVB mice is correlated with reduced neuroinflammatory response and parvalbumin-positive neuron loss
Exposure to loud noises results in neuroinflammatory responses in the central auditory pathway. Noise-induced neuroinflammation is implicated in auditory processing deficits such as impairment in gap detection. In this study, we examined whether strain differences between the FVB and C57BL/6 mice in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686384/ https://www.ncbi.nlm.nih.gov/pubmed/33235216 http://dx.doi.org/10.1038/s41598-020-75714-1 |
Sumario: | Exposure to loud noises results in neuroinflammatory responses in the central auditory pathway. Noise-induced neuroinflammation is implicated in auditory processing deficits such as impairment in gap detection. In this study, we examined whether strain differences between the FVB and C57BL/6 mice in noise-induced impairment in gap detection are correlated with strain differences in neuroinflammatory responses. We found that noise induced more robust TNF-α expression in C57BL/6 than in FVB mice. Noise-induced microglial deramification was observed in C57BL/6 mice, but not in FVB mice. Furthermore, noise exposure resulted in a reduction in parvalbumin-positive (PV+) neuron density in the C57BL/6 mice, but not in FVB mice. These results suggest that neuroinflammatory responses and loss of PV+ neurons may contribute to strain differences in noise-induced impairment in gap detection. |
---|